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ABSTRACT

SAMPLING METHODS IN RAY-BASED GLOBAL ILLUMINATION

David Cline
Department of Computer Science

Doctor of Philosophy

In computer graphics, algorithms that attempt to create photographic images by
simulating light transport are collectively known as Global Illumination methods. The
most versatile of these are based on ray tracing (following ray paths through a scene), and
numerical integration using random or quasi-random sampling. While ray tracing and sam-
pling methods in global illumination have progressed much in the last two decades, the goal
of fast and accurate simulation of light transport remains elusive. This dissertation presents
a number of new sampling methods that attempt to address some of the shortcomings of
existing global illumination algorithms.

The first part of the dissertation concentrates on memory issues related to ray tracing
of large scenes. In this part, we present memory-efficient lightweight bounding volumes as
a data structure that can substantially reduce the memory overhead of a ray tracer, allowing
more complicated scenes to be ray traced without complicated caching schemes.

Part two of the dissertation concerns itself with sampling algorithms related to direct

lighting, an important subset of global illumination. In this part, we develop two stage
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importance sampling to sample the product of the BRDF function and a large light source
such as an environment map. We then extend this method to include all three terms of the
direct lighting equation, sampling the triple product of the BRDF, lighting and visibility.
We show that the new sampling methods have a number of advantages over existing direct
lighting algorithms, including comparatively low memory overhead, little precomputation,
and the ability to sample all three terms of the direct lighting equation.

Finally, the third part of the dissertation discusses sampling algorithms in the con-
text of general global illumination. In this part, we develop two new algorithms that attempt
to improve the sampling distribution over existing techniques by exploiting information
gained during the course of sampling. The first of these methods, energy redistribution
path tracing, works by using path mutation to spread energy, and thus share sampling
information, between pixels. The second method, sample swarming, shares information
gained during sampling by keeping importance maps for each pixel in the rendered image.
Whenever a new pixel is to be rendered, the maps from neighboring pixels are averaged,
propagating importance information through the scene. We demonstrate that both of these
methods can perform substantially better than existing global illumination algorithms in a

number of common rendering contexts.
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Chapter 1

Introduction

1.1 Global Illumination

Today, a good number of rendering programs exist that can produce output virtually in-
distinguishable from a photograph. Methods used to create such “synthetic photographs”
are collectively known as global illumination algorithms. The distinguishing characteristic
of a global illumination algorithm, as opposed to an ad-hoc lighting algorithm, is the goal
of accounting for all light scattering events that lead to the creation of a photograph. In a
very real sense, the process of global illumination is a physical simulation in which light is

followed through a virtual scene and recorded on a virtual film plane.

Figure 1.1: Ad-hoc lighting vs. global illumination.
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Images rendered with global illumination can have a very compelling quality be-
cause they mimic subtle lighting effects that are present in real photographs. For example,
the pair of images in figure 1.1 have the same geometry and a similar lighting setup, but the
left image was rendered with an ad-hoc lighting algorithm, and the right image was ren-
dered using global illumination. Note the photographic quality of the image rendered with
global illumination. By contrast, the image created with ad-hoc lighting looks more like an
illustration than a photograph, and is perceptually much flatter. Beyond mere appearances,
however, the global illumination image is an attempt to accurately simulate a photograph of
the computer-modeled scene. Since global illumination can create photographic images of
objects that do not or cannot exist, it has applications in a number of industries, including
lighting design, product prototyping and special effects.

To get a sense for the difficulty facing a global illumination renderer, let us consider
the effort needed to calculate the value of just a single pixel in a global illumination image.
The pixel itself can be considered to be the output of a light sensor on the image plane such

as a CCD or tiny section of film. The job of the renderer is to compute the response of

Image
Plane

Time

Incoming
Radiance
Pixel Value = / Incoming Radiance
Time x Lens x Pixel

Figure 1.2: The value of a pixel in a global illumination image is a high dimensional
integral of the radiance striking a pixel sensor.
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this sensor during the camera exposure. If we allow for photographic effects like motion
blur, depth of field and antialiasing over the film plane, the output of the pixel sensor must
be expressed as a five dimensional integral of the incoming radiance striking the sensor,
with one dimension for time, two for lens area and two for the area of the pixel sensor, as
shown in figure 1.2. Beyond these five dimensions, the incoming radiance that strikes the
lens must be evaluated using the rendering equation, another high dimensional integral that

accounts for light scattering in the scene.

1.2 Ray-Based Global Illumination Methods

Because of the difficulty of the integrals involved, the most versatile global illumination
algorithms currently available tend to be based on some kind of numerical integration that
samples the integrand by means of ray tracing. Kajiya [1986] was the first to publish a
global illumination algorithm of this type. He defined the rendering equation and sug-
gested Monte Carlo integration as a way to solve it, calling his algorithm “path tracing”.
Each Monte Carlo sample in path tracing consisted of a ray path that connects a point on a
pixel sensor to a light source through a number of scattering events (reflections or transmis-

sions). The value assigned to the ray path by the Monte Carlo sampler forms an unbiased

Time

Ray Path
Scatter
Point

Figure 1.3: A Monte Carlo sample in a path tracer consists of a ray path that connects a
point on a pixel sensor to a light source through a number of scattering events.
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estimate of the true pixel value (it is correct on average, but individual samples may have a
high error). The error can be reduced by averaging multiple ray paths per pixel; however,
in its original form path tracing took many samples per pixel to produce high quality im-
ages. Even simple scenes would sometimes require many thousands of samples per pixel
to converge, making the algorithm impractical.

While the past two decades have seen major progress in ray-based global illumina-
tion methods, the goal of fast and accurate simulation of light transport through ray sam-
pling remains elusive. This dissertation presents a number of new algorithms that attempt
to address some of the shortcomings of existing methods. The new algorithms range from
very low level ray tracing optimizations to global sampling algorithms that help control
the distribution of ray path samples used to create an image. The main thrust of the new
sampling algorithms is to improve the sampling distribution using information gained dur-
ing the course of sampling—information that cannot be provided a priori by current local

sampling methods.

1.3 Dissertation Overview and Scope

This dissertation is divided into three parts, each of which explores a different topic related
to sampling in ray based global illumination. Each part begins with a chapter that dis-
cusses existing work and then goes on to present one or more new algorithms in successive
chapters.

Part I of the dissertation examines ray casting, the fundamental sampling operation
used by all ray based renderers. The research in part I describes the use of low memory
footprint lightweight bounding volumes as auxiliary data structures for ray tracing. Al-
though bounding volumes are a much studied topic, most discussions concentrate on speed
alone, and do not rigorously discuss memory costs. This is important since the size of scene
descriptions that people want to render has more than kept pace with increases in system

Memory.
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In part 11, we discuss new sampling methods for direct lighting, a subset of global
illumination. The research in this part presents a new sampling method called two stage im-
portance sampling, which can quickly generate samples approximately distributed accord-
ing to the product of a BRDF (the light scattering function on a surface) and an environment
map or other large light source. We then extend this method to include an approximate
shadow term, thus sampling the triple product of the BRDF, lighting and visibility.

Finally, part III presents sampling algorithms that are directly applicable to the gen-
eral global illumination problem. The original work in part III consists of two algorithms
that exploit coherence in path space through path reuse or mutation. The first of these meth-
ods, energy redistribution path tracing, works by using path mutation to spread energy, and
thus share sampling information, between pixels. The second method, sample swarming,
shares information gained during sampling by keeping importance maps for each pixel in
the rendered image. Whenever a new pixel is to be rendered, the maps from neighboring

pixels are averaged, propagating importance information through the scene.
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Part 1

Ray Casting
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Chapter 2

Ray Casting Methods

Ray casting is the fundamental low level sampling operation required by all ray-
based renderers. Given a geometric scene description and a ray in space, ray casting deter-
mines either the first object in the scene that the ray intersects, or whether the ray intersects

an object within a predetermined distance.

2.1 Ray Intersection with Scene Primitives

Ultimately, a geometric scene description suitable for ray intersection must be composed
of base level, or “primitive” objects for which direct ray intersection routines exist. Conse-
quently, an important line of research in computer graphics has been the development and
optimization of intersection algorithms for different types of object primitives. Examples
of primitives for which ray intersection routines exist include spheres, triangles, polygons,
quadrics, 3D curves, generalized cylinders, bicubic patches, NURBS and implicit surfaces,
to name a few. Haines and Hanrahan, in [Glassner 1989], provide good surveys of the
state of ray-object intersection techniques as of the late 1980s. Despite the large number of
available objects, however, most ray tracers usually support only a few object types. This
is true because most objects can be approximated well with polygon meshes, so it is often

hard to justify the expense of implementing other object types.
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2.2 Auxiliary Data Structures

Probably a more important question than what type of primitives a ray tracer should offer is
how to efficiently cast rays in scenes that contain many primitives. Typical modern scenes
may contain millions of primitives, and it is unfeasable to check rays against each primitive.
Thus, nearly all ray tracers employ some kind of auxiliary data structure to speed up ray
queries. Arvo and Kirk [Glassner 1989] and Chang [2001] have published surveys of work
in this area. Here I will not provide a complete survey, but I will describe the three most
popular acceleration data structures in use today: voxel grids, axis-aligned binary space

partitioning (BSP) trees and bounding volume hierarchies (BVHs).

2.2.1 Voxel Grids

A voxel grid is an auxiliary data structure that subdivides space into a 3D array of rectan-
gular cells called voxels, each of which references those scene primitives that it partially
or fully encloses. To speed up ray casting, a voxel-based ray intersection routine traverses
through the voxels in the order that they are pierced by the ray, only performing intersection
tests with the primitives referenced by those voxels. Figure 2.1 shows an example voxel

grid that encloses seven objects, in 2D rather than 3D for simplicity.
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Figure 2.1: Voxel grids subdivide space into uniform cells that can be quickly traversed by
a ray intersection routine. Speed is attained because the the ray only needs to be intersected
with those scene primitives that fall within voxels pierced by the ray.
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Fujimoto et al. [1986] first popularized voxel grids as an acceleration data struc-
ture, showing that regular grids can be quite efficient for some scenes, due to the simplicity
of traversing the voxel data structure. The performance of regular voxel grids as an ac-
celeration data structure is poor for some scenes, however. Scenes containing small but
highly tessellated objects within a much larger scene are particularly difficult for regular
voxel grids. This is commonly referred to as the “teapot in the stadium” problem. Adaptive
grids, such as octrees [Glassner, 1984] can handle non-uniformly packed objects better than
regular grids by adapting to local changes in scene object density. This flexibility comes
at the expense of a slower and more complicated traversal routine, however. Consequently,
adaptive grids have fallen out of favor as an acceleration data structure. An alternative to
using a single adaptive grid is to nest regular grids. In the nested grid scheme, a top level
voxel grid encloses secondary grids, which in turn either bound primitive objects or yet
more grids, and so on. The effect of the nesting is to allow adaptive spatial subdivision in
densly populated regions of a scene while keeping the fast, simple traversal methods used
by regular voxel grids. In an early application of grid nesting, Snyder and Barr [1987] used
hand generated hierarchies of grids and object lists to ray trace scenes containing hundreds
of billions of instanced primitives. Later, Klimaszewski and Sederberg [1997] addressed
automatic generation of nested voxel grid hierarchies. Pharr and Humphreys [2004] de-

scribe an implementation of voxel grids, and provide sample code for the method.

2.2.2 Axis-Aligned BSP Trees

Rather than partitioning space into a grid of regular cells, an axis-aligned BSP tree (also
called a Kd-tree) subdivides space into a hierarchy of non-uniform rectangular regions with
axis-aligned splitting planes. Leaf regions in the hierarchy reference those scene objects
that they partially or fully enclose (see figure 2.2). To speed up ray casting, the intersection
routine traverses the BSP tree recursively, only intersecting the ray against scene primitives

referenced by the leaf nodes that the ray passes through.
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Figure 2.2: An axis-aligned BSP tree subdivides space with splitting planes aligned to the
X, Y or Z axis, creating a hierarchy of rectangular regions. The BSP tree can accelerate
ray casting since the intersection routine only needs to intersect the ray with scene objects
referenced by those BSP leaf nodes that the ray passes through.

Kaplan [1985] was the first to describe the use of axis-aligned BSP trees to accel-
erate ray casting. Kaplan billed his method as an alternative way to traverse octree grids.
Later, Fussell and Subramanian [1988] gave a more general description of axis aligned BSP
trees as an acceleration data structure. MacDonald and Booth [1990] made a number of
important observations about optimal creation of BSP trees as acceleration data structures.
Wald et al. [2001] described a compact implementation of axis-aligned BSP trees that only
requires 8 bytes per node, and made a number of important observations about cache co-
herence related to traversing the BVH hierarchy. More recently, Haines [2004] wrote an
in-depth discussion of the surface area heuristic for determining the splitting planes in a
BSP tree. Sung and Shirley [1992] and Pharr and Humphreys [2004] have published im-

plementations of axis-aligned BSP trees.

2.2.3 Bounding Volume Hierarchies

Another type of data structure commonly used to accelerate ray casting is the bounding
volume hierarchy, or BVH. The idea behind a BVH is to enclose successively smaller
lists of objects at each level of the hierarchy. For example, consider the BVH shown in

figure 2.3. The root node of this hierarchy encloses all seven objects in the scene, and

12

www.manaraa.com



\OO

(O O

Figure 2.3: A bounding volume hierarchy, or BVH, encloses a group of objects in a hierar-
chy of nested bounding volumes, such as spheres or boxes. The root node of the BVH en-
closes the entire list of objects, and children and grandchildren enclose succesively smaller
sublists. BVHs can accelerate ray casting because the intersection routine only traverses
BVH nodes that the ray intersects.

the two children of the root enclose three and four objects, respectively. The children of
these nodes each bound either one or two objects. Finally, leaf nodes in the hierarchy
reference the scene primitives that they contain. Like BSP trees, ray intersection with a
BVH proceeds in a recursive fashion. The ray is tested against the root bounding volume,
and if it intersects the root the ray is tested against the root’s children, and so on. Efficiency
is gained because the intersection routine only has to traverse those BVH nodes that the ray
intersects.

Bounding volume hierarchies were one of the first acceleration data structures in-
troduced in the graphics literature. In an early implementation, Rubin and Whitted [1980]
accelerated ray casting with hand-generated BVHs. Later work showed that automatically
generated BVHs could be as good or better than those created by hand. The two main al-
gorithms used to generate automatic hierarchies are “median split” [Kay and Kajiya, 1986]
and the Goldsmith-Salmon algorithm [Goldsmith and Salmon, 1987]. Median split builds
a BVH as follows: The bounding box of all the objects that will be in the hierarchy is
calculated, and a list of these objects is sorted along the longest axis of the bounding box.

The list is then partitioned into two sublists with equal numbers of objects. This process
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is repeated on the two sublists, and so on, until some stopping criterion is met, such as a
maximum tree depth or minimum number of objects in a leaf node. A variant of the median
split algorithm subdivides lists of objects based on the spatial median rather than creating
sublists with equal numbers of objects. The Goldsmith-Salmon algorithm is a more sophis-
ticated technique that builds a BVH based on minimizing the surface area of the hierarchy.
Objects are added to the hierarchy one by one, and a search is conducted to dermine where
in the hierarchy each new object should be placed so as to minimize the increase in surface
area. Smits [1998] discusses practical issues related to BVH implementation and traversal,

and Shirley and Morley [2003] provide code for a BVH acceleration data structure.

2.3 The Need for Memory-Efficient Data Structures

Speed is always an issue with ray tracing, but equally critical is the need for memory
efficiency. Modern scenes can contain millions of primitives, and performance suffers
when the space requirements of a scene overrun physical memory. Chapter 3 discusses
how to eliminate some of the momory overhead of a ray tracer through the use of low

memory footprint lightweight bounding volumes.
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Chapter 3

Lightweight Bounding Volumes for Ray Tracing

A version of this chapter was published as:

David Cline, Kevin Steele and Parris K. Egbert. “Lightweight Bounding Volumes for Ray

Tracing.” Journal of Graphics Tools. vol. 11, no. 4, pages 61-71, 2007.

Abstract. To speed up ray casting, ray tracers generally employ some kind of spatial
subdivision scheme such as a voxel grid or bounding volume hierarchy. Much work has
been done to optimize these data structures for speed, but less work has been published
to optimize them in terms of space. This paper presents a memory-efficient auxiliary data
structure for ray tracing called a lightweight bounding volume hierarchy, or LBVH. We
show that LBVHs can be nearly as effective as standard bounding volumes in terms of speed
while using significantly less memory. In addition, we show that LBVHs are particularly
well suited as bounding volumes for lightweight geometry descriptions such as geometry

images and tessellated NURBS surfaces.
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3.1 Introduction

Managing scene complexity in ray tracing remains a challenge even when gigabytes of
memory are available. Scanline renderers handle complexity by treating geometry descrip-
tions as data that can be streamed through memory. Ray-based rendering algorithms such
as path tracing, however, require random access to the entire scene description, making the
stream data model impractical. The memory management model used by these algorithms
has historically been to load the entire scene description into memory and render the scene
from that description.

For scenes that will not fit in memory, two main types of techniques have been
developed to allow random access to the scene description. The first of these techniques re-
duces scene memory requirements by using more efficient scene descriptions. For example,
Snyder and Barr [1987] use object instancing to include similar objects in the same scene
multiple times. Other work in this category is focused on direct ray tracing of complex
primitives. Martin et al. [2000] ray trace NURBS surfaces directly, and Logie and Patterson
[1995] and Smits et al. [2000] ray trace some types of displaced surfaces without the need
to store bulky tessellations and bounding volumes. While these systems can produce im-
pressive results for some scenes, they do not form a general framework for ray tracing all
object types.

Experience has shown that, despite the memory hit, it is usually better and more
flexible to tessellate complex primitives instead of trying to render them directly. To this
end, a set of techniques has been developed that manage scene complexity by using ge-
ometry caching. Pharr and Hanrahan [1996] describe a ray tracing system that caches tes-
sellations of displaced surfaces. Later, Pharr et al. [1997] introduce the idea of memory
coherent ray tracing, in which both rays and geometry are cached to increase rendering
efficiency. More recently, Christensen et al. [2003] describe a geometry cache that uses ray

differentials to control tessellation rates.
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Besides the geometry itself, nearly all ray tracers use some kind of acceleration data
structure to speed ray casting. Since modern scenes often contain millions of primitives,
an ideal acceleration data structure should be fast to traverse for large numbers of objects.
It should also have a small memory footprint, and be quickly regenerated so that it can
be used effectively in conjunction with geometry caching. In this paper we present a data

structure called a lightweight bounding volume hierarchy or LBVH that meets these goals.

3.2 Memory Usage in Typical Ray Tracers

This section discusses the geometry memory requirements of typical ray tracers. Through-
out this section we have attempted to be reasonably accurate, yet conservative, in our es-
timates of memory usage. We will assume that pointers and floating point numbers use 4

bytes of memory.

3.2.1 Standard Geometry

Geometry descriptions are one of the principal memory users in a ray tracer. Perhaps the
most commonly rendered of these is the triangle mesh. A typical minimal configuration
for a triangle mesh is to have each triangle in the mesh point to three vertex structures
(12 bytes in pointers), with each vertex being used by about 6 triangles on average, so that
each triangle bears one half the cost of a vertex [Shirley and Morley, 2003]. The vertex
structures themselves must contain at least a position (12 bytes), but they likely include
a vertex normal (12 bytes) and texture coordinates (8 bytes) as well. This yields a total

memory usage per triangle of around 28 bytes.

3.2.2 Lightweight Geometry

To decrease memory usage, some scene descriptions include lightweight geometry, object
descriptions that have a very small memory footprint per geometric primitive. Examples of

lightweight geometry include height fields, geometry images, and tessellations of NURBS
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or displaced surfaces. Lightweight geometry descriptions often take only a few bytes per
primitive to store. For example, a geometry image that is stored as a 2D array of points uses
slightly more than 6 bytes per triangle, and a height field that is represented as an array of

floats consumes just over 2 bytes per triangle.

3.2.3 Auxiliary Data Structures

In order for ray tracing to be efficient, an auxiliary data structure such as a bounding vol-
ume hierarchy (BVH) or voxel grid must be used to speed intersection tests. This auxiliary
data structure can use a significant amount of memory. To illustrate, consider the follow-
ing reasonably efficient implementation of a BVH node similar to the one described in

[Shirley and Morley, 2003]:

struct BVHnode {
float minBounds[3];
float maxBounds[3];
BVHnode *left, *right;
b
Each BVH node contains six floating point numbers and two pointers, yielding 32 bytes.
Smits [1998] shows how to eliminate one of the pointers in the BVH node structure by
storing the nodes in an array in traversal order and using “skip” pointers instead of child
pointers. Our technique takes this idea a step further, eliminating all pointers from the
acceleration data structure.

Memory requirements can also be decreased by using reduced precision numbers.
Terdiman [2001] describes the use of “quantized trees” to lower memory costs in a collision
detection context. Mahovsky [2005] presents reduced precision hierarchies in a ray tracing
context, using unsigned bytes instead of floating point numbers in the BVH nodes. To
maintain precision, Mahovsky employs a hierarchical encoding scheme, which increases

the B VH.traversal time;-however. Our algorithm also uses reduced precision numbers to
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lower memory requirements, but we use a simpler, fixed encoding scheme, and maintain
precision by nesting multiple bounding volume hierarchies.

A third way to decrease the amount of memory taken by a bounding volume hier-
archy is to increase the branching factor (number of children per node). If we consider a
hierarchy’s “bounding ability” to be proportional to the number of leaf nodes, increasing
the branching factor decreases the memory cost for the same bounding ability. We refer
to the amount of memory that a hierarchy uses per leaf node as the amortized cost of leaf
nodes. For a constant branching factor of &, the amortized cost of leaf nodes can be calcu-
lated as k/(k— 1) times the cost of a single BVH node. Hence, if the BVH nodes defined at
the beginning of this section are arranged into a binary tree, the amortized cost of the leaf
nodes is twice that of a single node, or 64 bytes. Bounding volume methods with a higher
branching factor, such as the Goldsmith-Salmon algorithm [Goldsmith and Salmon, 19871
have a lower amortized cost per leaf node.

Acceleration data structures other than BVHs, such as the voxel grids
[Fujimoto et al., 1986; Klimaszewski and Sederberg, 1997] and axis-aligned BSP trees
[Wald e al., 2001], may fare a little better than standard bounding volumes in terms of
memory footprint, but they too can require substantial amounts of memory. For voxel
grids, each voxel typically contains a pointer (4 bytes), and non-empty voxels have a list of
objects that intersect the voxel bounds. To achieve maximum speed, the number of voxels
is often set to several times the number of objects enclosed in the grid. This causes a large
percentage of the objects to span multiple voxels, which in turn increases the number of
object pointers that must be stored. BSP nodes can be described compactly, using only one
float and one pointer (8 bytes), so the amortized cost of leaf nodes, not including any object
pointers in the leaves, is 16 bytes. However, as with voxel grids, objects may span multiple
spatial partitions, so it is likely that several pointers will need to be stored for each object

enclosed by the hierarchy.

19

www.manaraa.com



3.3 Lightweight Bounding Volumes

In this section we show that in the case of bounding volume hierarchies, implicit indexing
can be used to create auxiliary data structures that have no pointers at all. We then show
that by combining implicit indexing with limited precision numbers, bounding volume
hierarchies can be created that are easy to initialize, efficient to traverse, and require only a

few bytes per enclosed object to store.

3.3.1 The LBVH Data Structure

A lightweight bounding volume hierarchy (LBVH) is an essentially complete k-ary tree
that is stored in an array, and indexed like a heap. Node zero in the array is designated as
the root node, and for any node g, its parent is node | (¢ — 1)/k|, and its children are nodes
(gk+1) to (q¢k + k). The data members of the LBVH node use limited precision numbers,
typically two-byte shorts or unsigned bytes, to conserve space. One possible LBVH node

is defined as follows:

struct LBVHnode {
short minBounds[3];
short maxBounds[3];
%
This structure only requires 12 bytes. Our implementation is based on a branching
factor of four, so the amortized cost of leaf nodes is 4/3 the cost of a single node, or 16
bytes. We found four to be a good tradeoff between the size of the hierarchy and traversal
speed. In our experiments, using a branching factor of four decreased speed by about 1.5%
while saving a third of the memory cost of the hierarchy. By contrast, using a branching

factor of 8 only saved an additional 9.5% of the memory cost, while being 14% slower.
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As mentioned, child pointers are not needed since the hierarchy is indexed like a
heap. Explicit object lists at the leaf nodes are also not needed. Instead, a simple function,
which will be defined in section 3.3.4, determines which objects are enclosed by a given
leaf.

In addition to the array of limited precision nodes, we store the bounding box of
the whole hierarchy, B, at full precision in world space. The limited precision nodes are
encoded as fractions of this world space bounding box. When the hierarchy is traversed, the
bounding box will be used to transform rays from world space to the range of the limited
precision numbers used by the LBVH (i.e. range = 255 for unsigned bytes and 2'> — 1 for

shorts). The transformation is a translation followed by a scale:

translate = (—Bynin, —Bymin, —Bzmin) G.D

range — 1 range — 1 range — 1 ) (3.2)

scale = ( , ,
meax - mein Bymax - Bymin Bzmax - Bzmin

Note that we subtract 1 from range in equation 3.2 to avoid overflow, which can happen
because of numerical imprecision.

To maintain tight bounds, we do not use a single LBVH for the entire scene. Instead,
we enclose each polygonal mesh in its own LBVH, and then enclose these in a second level
hierarchy that encompasses the whole scene. Without this step, large structures such as

walls or ground planes could steal precision from finely tessellated parts of the scene.

3.3.2 LBVH Initialization in the General Case

This section discusses how to initialize an LBVH for an unorganized list of objects. Our
implementation uses a variant of median split adapted to handle a branching factor of four
rather than two. Instead of splitting a node once to create two children as in the median split

algorithm, we split twice to create four children. In addition, we do not split object lists
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LBVH Initialization:

1. Calculate the bounding box of the n objects, B.
2. Calculate translate and scale using equations 3.1 and 3.2.
3. Calculate the number of nodes in the hierarchy, m.
3a. m= |4n/3].
3b. Increment m by 1 until m % 4 equals 1.
4. Calculate how many objects will go into each node.
4a. Assign one object to each leaf node.
4b. Find number of objects in non-leaf nodes (sum number in children).
5. Recursively partition the objects, starting at the root node.
Sa. Store the bounding box of objects enclosed by the current node in the node.
5b. If the current node is a leaf, return.
Sc. Sort the objects on the longest axis (in world space).
5d. Divide the objects into two intermediate partitions.
Let a, b, c and d be the number of objects that will be assigned to
the children of the current node.
Place a + b objects in the first intermediate partition, and ¢ 4 d objects
in the second intermediate partition.
Se. Compute the bounding box of each intermediate partition.
5f. Sort the objects in the intermediate partitions along their longest axes.
5g. Place a, b, c and d objects in the four children of the current node.
Sh. Recursively partition each of the four child nodes.

Figure 3.1: Algorithm to initialize an LBVH for a list of n objects.

at the exact median. Rather, we determine how many objects should go into each node in
the tree to make sure that all leaf nodes contain the same number of objects. Constructing
the tree in this way guarantees that the BVH will be fully balanced, which is required for
implicit indexing. Figure 3.1 gives pseudocode for initializing an LBVH. The remainder of

this section describes the initialization steps in detail.

Determining the size of the LBVH. As an example of LBVH initialization, consider
the problem of bounding 7 objects in an LBVH with one object in each leaf node (refer to
figure 3.2). In step 1 of the algorithm, the bounding box of the seven objects is calculated.
Step 2 calculates the translate and scale vectors associated with the bounding box (equa-

tions 3.1 and 3.2). In step 3, the number of nodes that will be in the hierarchy is determined
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(a) (b) (c) (d)

Figure 3.2: A lightweight bounding volume hierarchy. (a) The LBVH is stored as an array
of nodes. In this case, 9 total nodes are in the array, with 7 leaf nodes, shown in gray (step
3 of figure 3.1). (b) Before an LBVH can be initialized, the number of objects enclosed by
each node in the hierarchy must be calculated. First, a predetermined number of objects is
assigned to each leaf node, in this case one object per leaf. Then, the number of objects
enclosed by internal nodes is calculated by summing the number of objects contained by
their children (step 4 of figure 3.1). Finally, the LBVH is initialized based on repeated
sorting of the array of objects (step 5 of figure 3.1). (c) shows the indices of the objects
that are ultimately enclosed by the LBVH nodes. Note that the first leaf node on the bottom
row of the hierarchy always encloses object zero. (d) provides a graphical depiction of the
hierarchy, labeling the objects according to their final positions in the object array.

using the amortized cost of leaf nodes. We use a branching factor of four, so the hierarchy
will contain 4/3 as many nodes as leaves, or |7 x (4/3)] = 9 total nodes. In step 3b, we
increase this value slightly if necessary to make sure that all interior nodes in the hierarchy

have four children. This eliminates an array bounds check during traversal.

Calculating the number of objects enclosed by LBVH nodes. Step 4 of the algorithm
determines the number of objects that will be enclosed by each node in the hierarchy. We
start by temporarily assigning one object (or some small fixed number) to each leaf node,
and then calculate the number of objects in internal nodes by summing the number of
objects in their children. Figure 3.2(a) shows the hierarchy for our example, and figure

3.2(b) shows the number of objects enclosed by LBVH nodes.

Initializing the bounding volume hierarchy. Once the number of objects assigned to

the nodes.in.the LBVH has been established, the objects can be partitioned among the
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nodes (step 5). Consider again the example of enclosing seven objects with an LBVH. To
initialize the hierarchy, we transform the bounding box of the objects using equations 3.1
and 3.2, and store the result in the root node of the LBVH. Next, the objects are sorted
along the longest axis of the bounding box (in world space, not limited precision space).
The sorted list of objects is then partitioned so that the left partition has five objects (the
sum of the number of objects enclosed by the first two children of the root, 4+1), and the
right partition has two objects (the sum of the number of objects enclosed by the second
two children of the root, 1+1). These partitions are then divided again by computing their
bounding boxes and sorting the objects based on the corresponding longest axes. The
objects are then distributed to the 4 child nodes, and the process repeats recursively for all

internal nodes in the hierarchy, resulting in the configuration shown in figure 3.2(c).

3.3.3 LBVH Initialization for Regular Tessellations

This section discusses how to initialize lightweight bounding volumes for two common
types of lightweight geometries, those based on rectangular and triangular subdivision.
Notable examples of these include geometry images height fields. Unlike the algorithm
shown in figure 3.1, an LBVH can be initialized for regular tessellations without the need

for repeated sorting, making the initialization much faster and easier.

Region encoding. In both rectangular and triangular subdivision, the geometry is stored
as an array of points rather than a list of triangles. We make the assumption that the x and y
dimensions of this array are equal and a power of two plus one. This is the same assumption
used by Christensen et al. [2003] in their geometry cache. Making this assumption allows
us to encode array regions using a triple of position and extent. For example, the triple

(x,y,d) encodes the rectangular and triangular regions shown in figures 3.3(a) and 3.3(b).
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(x,y) (x,y)
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Figure 3.3: Two common types of regular tessellations. Regions in both rectangular (a)
and triangular (b) subdivision schemes can be parameterized using a triple of position and
extent, (x,y,d).

Child regions. The encoded regions of child nodes in both the rectangular and triangular
cases can easily be derived from their parents. For example, the child regions of the node

encoded by the triple (x,y,d) are:

Rectangular Triangular
x, y, d/2)
x+d/2, y, d/2) x, y+d/2, d]2)

x, y+d/2, d/2)

( (
( (
( (x+d/2, y+d, —d]2)
( (

x+d/2, y+d/2, d/2) x+d/2, y+d/2, d/2).

Array indexing for triangular subdivision. In the case of triangular subdivision, the
array of points that defines the geometry is arranged in a triangle shape rather than a square.
Consequently, a standard 2D array mapping function will not work. The mapping function

that we use instead is i = y(y — 1) /2 +x where i is the index of point (x,y) in the array.

Initialization. As in the general case, the algorithm we use to initialize an LBVH for a
regular tessellation starts by finding the bounding box of the objects and a transformation
from world space to limited precision space. Next we calculate the number of nodes in
the hierarchy, assuming two triangles will be enclosed by each leaf node for rectangular

subdivision, and one or four will be enclosed for triangular subdivison. The LBVH is
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then initialized in a bottom-up fashion, determining the bounding boxes of the leaves, and
then calculating the bounding box for parents by combining the bounding boxes of their

children.

3.3.4 LBVH Traversal

A ray can be intersected with an LBVH in the same way as with any other bounding volume
hierarchy, except that the ray must be transformed into the coordinate system of the LBVH,
and the indices of enclosed objects must be calculated by the traversal routine. During

traversal, the object index corresponding to leaf j is found using the equation

i — 1) n ifj </
i (J b) J=>1 (3.3)

(j—lp+m—1)n otherwise

where i is the beginning index of objects enclosed by leaf node j, /, is the node index of the
first node on the bottom row of the hierarchy (5 for the hierarchy shown in figure 3.2), m is
the number of leaf nodes in the hierarchy, and 7 is the number of objects enclosed by each
leaf node. Figure 3.4 gives pseudocode for LBVH traversal. In the case of general object
lists, only the node indices need to be pushed onto the stack. For regular tessellations,
however, the triple describing the region covered by a node is pushed onto the stack along
with the node index.

The pseudocode in figure 3.4 indicates the optimization of early traversal exit for
shadow rays. Other common optimizations could be tried in the traversal as well, such as
checking to see if bounding box intersections are further than the best intersection so far,
implemented in the demo program, or sorting child nodes by distance along the ray, not

implemented in the demo program.
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LBVH Traversal

Transform the ray to LBVH space (translate and scale).
Push the root node onto the stack.
While the stack is not empty
Pop a node off the stack.
If the transformed ray intersects the node
If the node is a leaf
Intersect un-transformed ray with objects in the leaf.
If the ray is a shadow ray and the ray intersected an object
Return the intersection point.
Else if the ray intersected an object
Update the closest intersection point if needed.
Else
Push the children of the node onto the stack.
Return the closest intersection found or no intersection.

Figure 3.4: Algorithm to intersect a ray with an LBVH.

Skull (22 k tris.) Bunny (68 k) Buddha (1062 k)

N

Bunnies (3.6 M) Dragon (6.9 M) Angel (27 M)

Figure 3.5: Scenes used to test LBVH performance, showing the number of triangles in
each scene.
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3.4 Comparison to Other Acceleration Methods

This section compares the performance of lightweight bounding volumes to median split
BVHs and voxel grids. To make the comparison fair, all of the methods are built as two level
hierarchies, with a separate bounding structure used for each polygon mesh. We rendered
several scenes of varying complexity using each of the different acceleration schemes. The

test scenes are shown in figure 3.5.

3.4.1 Memory Usage

Table 3.1 compares the memory usage of different bounding volume schemes to the “typ-
ical” memory usage for the geometry itself. Voxel grids were initialized to have the same
number of voxels as the number of enclosed objects. Bounding volumes were initialized to
enclose one primitive in each leaf node. Standard BVH memory statistics are based on the
BVHnode structure given in section 9.1. Memory usage for LBVHs using short (2 byte)
integers and unsigned bytes are both listed. Triangle memory usage statistics are based on
28 bytes per triangle, assuming shared vertices. Of course, some scenes may not require
as much memory per triangle, but decreasing the memory requirements of the triangles ac-
tually makes our technique more attractive because it increases the proportion of memory
taken by the acceleration data structure.

As can be seen from table 3.1, standard bounding volumes with 1 primitive per leaf
take more than twice as much memory as the geometry they enclose, whereas lightweight
bounding volumes take only about 30 or 60 percent as much memory as the geometry (1/4
or 1/8 the memory cost of standard BVHs). Most of the voxel grid examples in the table are
on par with LBVHs in terms of size, but the only example that is comparable in terms of
speed, the Skull, requires 60 percent more memory than the LBVH implementation based
on short integers. We believe this to be a general trend. Voxel grid methods gain speed by
increasing the number of voxels in the grid, which in turn increases the number of object

pointers that must be stored.
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Skull Bunny Buddha Bunnies Dragon Angel
Geometry 0.61 1.85 29.0 100.1 192.8 749.1
BVH 1.40 4.24 66.4 228.9  440.6 -
Voxel grids  0.56 0.94 13.3 44 .4 64.8 2522
LBVH short  0.35 1.06 16.6 57.2 110.2  428.1
LBVH byte  0.17 0.53 8.3 28.6 55.1 214.0

Table 3.1: Memory usage of different bounding volume schemes compared with typical
memory usage for the geometry itself. All table entries are given in megabytes. No statistics
are included for the Angel scene with standard BVHs since we were unable to load the
scene in this case.

Skull Bunny Buddha Bunnies Dragon Angel

BVH 18.5 6.6 9.2 15.3 8.0 -
Voxel grids 19.4 13.0 62.7 43.2 453  63.6
LBVH short  20.3 7.8 9.6 18.7 7.9 9.5

LBVH byte  21.1 9.5 16.9 23.3 3777 574

Table 3.2: Comparison of render times for different bounding volume schemes. In all
cases the images were rendered at 1024 x 1024 pixels with a single primary ray per pixel.
Table entries are given in seconds.

3.4.2 Render Speed

Table 3.2 compares render times for standard and lightweight bounding volumes as well
as voxel grids. As expected, LBVH times are slightly, but not significantly slower than
BVHs. In most cases LBVHs using short integers perform within about 10 percent of
standard BVHs, with the worst cases being about 20 percent slower. However, we were
unable to load the largest test model (the angel) using standard bounding volumes on a
machine with 2 GB of memory. Voxel grids slightly outperformed LBVHs in the “Skull”
test, but as mentioned, they required significantly more memory than LBVHs in this case.
In the other tests, voxel grids used less memory, but ran much slower.

Except for the smallest scenes, the one byte version of LBVHs ran much more
slowly than the two byte version. There appears to be a direct relationship between the

number of primitives in an LBVH and the performance gained by using shorts instead of
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bytes. Thus, a promising strategy might be to divide large polygon meshes into smaller
pieces that have only a few thousand polygons each, and then encode each of these in a

separate byte-based LBVH.

3.4.3 Number of Primitives per Leaf Node

For the majority of the cases that we tried, placing a single primitive in each leaf node
resulted in the fastest render times, but only by a small margin. This was the case for both
standard and lightweight bounding volumes. Render time for our implementation tended
to degrade gracefully with the addition of more primitives to leaf nodes, with an increase
in render time of about 10% at 4 objects per leaf, and 30% at 8 objects per leaf. Based
on these results, we suggest 4 objects per leaf as a default setting. That way, the memory
needs of the hierarchy reduce to roughly 4 bytes per primitive, which is the same amount
used up just pointing to the objects with an explicit indexing scheme.

One thing we noticed while profiling our demo program was that increasing the
number of primitives has the effect of transferring some of the ray tracing bottleneck from
LBVH traversal to triangle intersection. For example, in one scene that we tested triangle
intersection only took about 4% of the ray tracing time when each triangle was enclosed by

a leaf node, but it increased to 18% at 4 triangles per leaf and 37% at 8 triangles per leaf.
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Part 11

Sampling Methods for Direct Lighting
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Chapter 4

Direct Lighting Methods

This chapter discusses methods to solve the direct lighting problem. Direct lighting
is an important subset of global illumination that accounts for light that has scattered at
most once on its way from the light source to the eye point, which I will refer to variously
as the direct lighting term or the single bounce radiance. In a ray tracing context, direct
lighting solutions must estimate the single bounce radiance of light flowing back towards
the eye point along each primary ray. In many scenes the direct lighting term dominates the

other, indirect lighting terms needed for full global illumination. Figure 4.1 demonstrates

direct lighting along with full global illumination for a simple scene.

Figure 4.1: Direct lighting (left) vs. full global illumination (right). The direct lighting
term is a physical simulation of the light that has bounced at most once, rather than an
ad-hoc lighting solution, as represented in figure 1.1. Although the indirect lighting terms
are needed to provide a photographic quality to the solution, the direct lighting term is by
far the most important in this scene.
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4.1 The Direct Lighting Equation

Mathematically, direct lighting can be expressed as a two dimensional integral that accounts

for the single bounce radiance from point x:

Ld(x—>‘1‘):Le(x—>‘P)—|—/QLe(x<——®) F(W o xo0)[cosB] dO. (4.1

The terms of the direct lighting equation are defined based on the local surface geometry

of the point struck by an eye ray. The terms are:

x

Y

n,

Q

C)

0

Ly(x—W¥)
L.(x—¥)
L.(x——0)
r(Pox—0)

The point struck by an eye ray.

The direction from x back to the eye point.

The surface normal at point x.

The hemisphere above point x and centered on ny.

A direction vector in Q.

The angle between ® and ny.

The direct lighting term, or single bounce radiance.

The radiance emitted from point x in direction V.

The emitted radiance that strikes point x from direction —@.
The BRDF function which defines the light scattering

properties of the surface at point x.

Arrows in the terms of equation 4.1 indicate the direction of light flow. For example,

the arrow,in.Lq(x— W) indicates that L; defines the radiance leaving point x, and the
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arrow in L, (x«<— —®) indicates that this term describes the radiance arriving at point x from
direction —@. The arrows in the BRDF function, f.(¥ < x < ®), indicate its reciprocal
nature—that is, W and © can be interchanged without affecting the value.

Although not explicitly stated, the integral in equation 4.1 is defined over units of
solid angle. This distinction will become important in the context of Monte Carlo solutions

to direct lighting.

4.2 Monte Carlo Integration

In practice, the direct lighting equation can almost never be evaulated symbolically. In-
stead, some form of numerical integration must be employed to approximate the integral
value. One could of course use a fixed quadrature such as the trapezoidal rule or Simpson’s
rule, but it turns out that deterministic integration schemes do not work well for high di-
mensional integrals or for integrals of discontinuous functions, both of which apply to the
direct lighting term. A better solution solution than a fixed quadrature is to use a random-
ized algorithm such as Monte Carlo Integration (MCI). In fact, MCI forms the basis of a

large number of rendering algorithms, so this section will describe it in detail.

4.2.1 Monte Carlo Integration in 1D

As a concrete example of how Monte Carlo Integration works, consider the problem of

integrating the 1D function g(x) over some interval |a, b]:

g(x)

/abg(x) dx
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Suppose that we were to choose a random number x; uniformly between a and b, and
evaluate g(x;). In statistical terms, a randomized procedure like this is called a random
variable. It shouldn’t be hard to see that the average value of this random variable is the
average of g over the interval [a,b], or in other words ;- ff g(x) dx. This expression
comes close to the integral we want, and in fact, we can make the expression equal the
integral by dividing by the probability that point x; was chosen, with respect to unit length.
In our example, the probability with respect to unit length that any point between a and b
was chosen has the constant value of bfla, so dividing by the probability yields the desired
integral value, [ f g(x)dx (on average).

Monte Carlo integration works precisely in this manner. A random variable X, is

constructed that has expected value equal to the desired integral as follows:

1. A point x; in the domain of the integral is chosen by some random procedure.
2. The integrand, g, is evaluated at x;.
3. The resulting value is divided by the probability that x; was chosen.

Intuitively, one can see why this procedure works, at least for uniform probability distribu-
tions, by comparing it to a deterministic integration rule such as the left endpoint rule. The
left endpoint rule approximates the integral [ f g(x)dx as the area of a rectangle of width
b — a and height g(a). MCI approximates the integral as a rectangle of height g(x;) and
width 1/pjenen(x;), which for a uniform probability distribution will always equal b — a.

Figure 4.2 shows this comparison graphically.

TN N
£(a) . T N\
8 (x;)
a b a X; b
b b-a —— 1 / pzeng;h(xi) —
Left endpoint rule MCI

Figure 4.2: The left endpoint rule and Monte Carlo integration.
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This analogy is not as straightforward for non-uniform probability distributions, but
it can be shown that X, will always produce the value of the integral “on average” as long
as the probability pj.,e, is non-zero wherever g is non-zero. Formally, the average value
returned by a random variable such as X, is called the random variable’s mean or expected

value. We write the expected value as an E with square brackets. Thus

g(xi)

X oy
§ Plength (xi)

b
and E[X,] = / 2(x) dx, 4.2)

where x; is a value chosen by the random number generator and pjepgp, 18 the probability
that x; was chosen, with respect to length. Other common expressions for the mean or
expected value include angle brackets, (X,), the greek letter mu (1) to refer to the mean,
and an overbar (ig) to represent to the sample mean, which is the average of a population

of samples drawn from X,.

Biased and Unbiased Monte Carlo estimators. The random variable X, is said to be
an unbiased estimator of | f g(x)dx because its expected value is exactly equal to the inte-
gral. This fact has the important consequence that the error of the estimate can be reduced
arbitrarily by averaging enough samples from X,. Because of this property, an important
design goal for rendering algorithms is that they be unbiased. Biased estimators, on the
other hand, do not give the desired answer on average. Instead, they trade off ultimate ac-
curacy for more predictable results, which may be desirable depending on the application.
The tension between biased and unbiased estimators is played out in a number of different

rendering algorithms, and we will revisit the issue throughout this dissertation.

Variance in Monte Carlo estimates. While the expected value of a random variable
such as X, measures the average value drawn from it, the variance describes how far away
from the average a particular draw is likely to be, or in other words, the expected error.

Formally, variance is defined as the average squared distance of the random variable from
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its expected value, and it is usually written as var(-) or 2. Thus
o =var(X,) = E [(X; — E[X,¢])?] . (4.3)

o7 is used to denote the variance because it is the mean squared error. The square root of
the variance, o, is called the standard deviation.
Equation 4.3 can be rearranged to separate X, from its expected value, resulting in

an alternate formula for the variance that is sometimes easier to evaluate:
var(X,) = E[X;] — E[Xg]*. (4.4)

In later sections we will see that a large percentage of Monte Carlo rendering algorithms
have been developed with no other goal in mind than decreasing the variance over existing

solutions.

4.2.2 Coordinate Systems and MCI in Higher Dimensions

Monte Carlo Integration can be extended to higher dimensions by replacing pjepg, from
equation 4.2 with probability with respect to area measure in the coordinate system of the
integrand. The term measure, as used in this context, is the definition of a unit of the
integration domain. A good way to think about this concept is to imagine that you are
integrating the function ¢(x) = 1. For this constant function, a unit of area measure will
always integrate to 1. Figure 4.3 shows two coordinate systems in R? that have different

area measures, Cartesian and polar coordinates.

sl B

* \%

1

Cartesian Polar
Figure 4.3: Area measures for Cartesian and polar coordinates. The gray regions indicate

areas of equal measure. Note that regions with equal measure in polar coordinates do not
necessarily cover the same amount of area on the plane.
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Change of variables and the Jacobian. It is sometimes convenient to change the coor-
dinate system of an integral to make it easier to evaluate. This is commonly referred to as a
change of variables, and it involves rewriting the integrand in terms of the new coordinate
system and multiplying by the Jacobian, which converts area measures from the original
coordinate system to area measures in the new coordinate system. For example, the Jaco-
bian for the change of variables from Cartesian to polar coordinates is the distance from

the origin, .

4.3 Applying MCI to the Direct Lighting Equation

Since the direct lighting equation (eq. 4.1) is just an integral over the hemisphere €, it
is straightforward to evaluate it with MCI in a ray tracer. For each primary ray, the direct

lighting term is estimated with N Monte Carlo samples as follows:
1. Evaluate L,(x— ¥), and add this value to the radiance estimate.

2. Choose a number of random directions in Q,.

3. For each chosen direction, ®;, cast a ray from point x in direction ©;, and evaluate
Lo(x——0j).

4. Calculate L, (x < —0;) f,(¥ <> x <> ®;)| cos 0;| for each @; and divide by the proba-
bility with respect to solid angle that the direction was chosen, pungi.(®;), since the

integral is defined in terms of solid angle.

5. Average the samples from step 4 together and add to the radiance estimate, resulting

in the expression

N A, | |
La(r—W) ~ Lo(x—w) + Ly L0 T 70) /(¥ = x 2 6)) [eosBy]

4.5)
N j=1 Pangle (G)j)
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The obvious choice for a sampling distribution over the €, is to select sampling
directions uniformly over the hemisphere (with respect to solid angle). Figure 4.4 shows
an image generated in this manner with 16 Monte Carlo samples per pixel, along with the
accepted image for comparison (an image made with many times more samples to show

the desired outcome).

Accepted Image Naive MCI (16 spp)

Figure 4.4: Naive MCI for direct lighting, based on a uniform sampling of the integration
domain. The accepted image is reproduced with 16 Monte Carlo samples per pixel.

Notice how poorly the uniform sampling distribution in figure 4.4 reproduces the
ideal image, despite the very simple lighting setup. Many of the pixels vary greatly from
their ideal values, and some features in the image such as the highlight on the sphere and the
back wall are barely discernible. In Monte Carlo rendering, this kind of error is often called
“noise”, and it occurs because the variance of the Monte Carlo pixel estimates is high. Of
course, the quality of a Monte Carlo rendering could be improved by drawing more ray
samples to estimate the pixel values, but this would result in a corresponding increase in
render time. What is needed is a way to reduce the error while taking the same number of
samples. The next section describes a family of importance sampling techniques for direct
lighting that decrease error by judiciously choosing the sampling distribution to reduce the

variance of the Monte Carlo estimate.
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4.4 Importance Sampling Techniques for Direct Lighting

Importance sampling attacks the problem of variance in Monte Carlo integration by choos-
ing a sampling distribution that is as proportional as possible to the function being inte-
grated. To see how such a strategy can reduce variance, consider the MCI definition of X,

from equation 4.2. If the sampling distribution pyee is chosen so that it is proportional to

g, then
Xi Xi b
plength(xi> = % and Xg = % = / g(x)dx7
a8 ffg(x)dx

or in other words, X, returns a constant value that is equal to the desired integral, and the
variance is zero. Unfortunately this ideal situation is difficult to achieve in practice for a
variety of reasons. Primarily, just evaluating pje,e, in the ideal case requires knowledge
of the desired integral, and even if pje,q, can be evaluated, we must still be able to draw
samples from it, which may be difficult or impossible, depending on g.

Although it may not be feasable to sample proportionally to a particular integrand,
if the integrand is the product of multiple functions, creating a sampling distribution that
is proportional to one or more of the terms of the product may still be worthwhile. For
direct lighting, a number of importance sampling techniques exist that create sampling

distributions based on the BRDF or the incident light terms in equation 4.1.

4.4.1 BRDF Sampling

Perhaps the most important property needed for a successful
BRDF model besides the ability to mimic real world sur-
faces is the ability to perform importance sampling based on
the BRDF function, or better yet, the product of the BRDF

and the cosine terms in equation 4.1. That way, the term

fr(¥ <= x—0j)|cosB;| will cancel out of the equation, hope-

Figure 4.5:
fully reducing variance. As a consequence of this goal, most =~ BRDF Sampling.
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BRDF models employed by Monte Carlo renderers have been designed to facilitate
importance sampling. For example, a number of analytic BRDF models, including
the Phong model [Phong, 1975], the Blinn model [Blinn, 1977], the Lafortune model
[Lafortune et al., 1997], and the Ward and Ashikhmin anisotropic models [Ward, 1992;
Ashikhmin and Shirley, 2000] can be importance sampled directly. This is accomplished
by analytically inverting the cumulative distribution function (CDF) of the BRDFE. The
inverted CDF can then be used to transform a uniform distribution of points to the distri-
bution of the BRDF. Sampled BRDF models, such as the one described by Lawrence et al.
[2004], can perform the same operation by searching a tabular representation of the CDF.
The rendering in figure 4.5 was produced with 16 BRDF-based importance samples per
pixel. Compare this to the right image in figure 4.4. Although most regions of the image
are still very noisy, The highlights on the sphere and back wall are much better represented

than without importance sampling.

4.4.2 Light Source Sampling

Importance sampling based on the BRDF function can reduce the
error of a direct lighting estimate, but there are many situations in
which the incident light term is the main source of variance. For
example, if the light sources in a scene are small, only a small por-
tion of Q, will have any incident illumination, so most directions

chosen based on the BRDF will miss the light sources entirely,

and thus have a zero contribution. In these situations, it would be

Figure 4.6:
Light Sampling.

better to send rays directly towards points on the light sources, en-
suring that L, (x«— —®;) will be non-zero unless the light source is
blocked by an intervening occluder.

Since lights are generally specified as surfaces in a scene rather than directions, it

is usually more convenient to select points on the light sources and send rays towards those
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points rather than trying to directly select directions in €, that will hit the lights. Of course,
this means that the samples are selected with respect to surface area rather than solid angle
which is required by equation 4.5. To resolve this problem, we multiply the probability
with respect to area by the Jacobian that converts to probability with respect to solid angle.

Equation 4.6 gives this conversion:

d2
cosp

pangle(®) - parea(y) (46)

In the equation, point y was chosen on a light source with probability pgreq(y), ¢ is the
angle between the normal at point y and the direction from y to point x, and d is the distance
between x and y.

In their text on ray tracing, Shirley and Morley [2003] describe techniques to gen-
erate samples on triangles, disks and spheres uniformly with respect to surface area. In
earlier, but more sophisticated work, Arvo [1995] described a method to distribute samples
uniformly on spherical triangles, and Shirley et al. [1996] presented algorithms to generate
samples non-uniformly on a number of different light source shapes to decrease variance.
Fig. 4.6 demonstrates the quality achieved by sampling the area of the light source instead
of the BRDF for our simple test scene. Again, 16 ray samples per pixel were used. Note
that the image quality is improved almost everywhere, but the highlight on the sphere is not

as well represented as with BRDF sampling.

Environment map lighting. One popular type of light source geometry, that will play

prominently in the next chapter, is the environment map [Debevec, 1998]. Environment
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map lighting makes the assumption that the light source is an infinite sphere surrounding
the scene, so that the emitted radiance in a particular direction is constant regardless of
position. Despite this approximation, renderings made with environment map lighting can
have a very realistic appearance, especially if the environment map was captured from real
world photography. The most common way to capture an environment map in a real scene
is to take photographs of a mirror ball, called a “light probe”. The light probe images
can then be used directly or warped into some other format such as latitude-longitude for

rendering. Figure 4.7 shows an environment map captured in St. Peter’s Basilica in Rome.

Figure 4.7: Light probe image captured at St. Peter’s Basilica in Rome. The left im-
age shows the original light probe image, and the right image shows a latitude-longitude
projection of the same environment.

A number of techniques exist to perform importance sampling based on the emis-
sion profile of an environment map. Burke [2004] describes two algorithms to distribute
samples according to the environment map brightness, one based on standard CDF inver-
sion and the other based on an alternate inversion method called the alias method. Other
work has tackled direct lighting from environment maps by approximating the illumination
with a fixed set of point lights (sampling directions). Using a fixed set of lights instead of
random samples gets rid of inter-pixel sampling noise because the same directions are used
to evaluate L; for each primary ray. The regularity of the sampling can create distracting
shadow boundary artifacts, however. Kollig and Keller [2003] presented a relaxation tech-
nique that positions point lights so as to be both well spaced and approximately distributed

according to the environment map brightness. Agarwal ef al. [2003] subdivided an envi-
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ronment map into regions, representing each region with a point light. The regions were
created using an importance function that takes into account both brightness and angular
extent. To eliminate shadow artifacts, the light source locations could be jittered during
rendering. The number of ray samples required for a given quality was also reduced by
sorting the regions based on potential contribution. Shadow rays would only be sent to
the regions with the highest potential contribution. More recent work has concentrated
on quickly defining high quality point light sets to represent environment map lighting

[Ostomoukhov et al., 2004; Debevec, 2005].

Sampling in the presence of occlusions and multiple light sources. When a renderer
sends rays towards points on light sources to evaluate the direct lighting equation, it has
several choices of how to treat the ray samples, each of which has particular consequences
for the Monte Carlo reconstruction. One school of thought holds that points on surfaces
are the entity being sampled. Within this framework, the renderer only needs to know if
point x and point y are mutually visible, and the MCI formula (equation 4.5) is rewritten as

follows:

1 { Le(xy;) fi(Peox—0;) V(xey) |cos6; cos g,
Nj:[ parea(yj) d]2

. @

where L.(x<«y;) is the emitted radiance from point y; towards point x, and V (x < y;) is
the visibility between points x and y; (defined as 1 if x and y; are mutually visible and 0
otherwise). In essence, the visibility term treats occluded points as though they are outside

the integration domain, assigning them a contribution of zero.
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A second school of thought holds that choosing points on surfaces is really just a
way to pick sample directions. Within this second framework, the renderer does not merely
evaluate the visibility between points x and y. Rather, the renderer casts a ray from point x
towards point y looking for the closest intersection point, and then calculates L, (x«— —0;)
based on that intersection. Equation 4.5 can still be used directly to compute the radiance
estimate, but py,e. turns into a summation over all light sources that the ray from x in

direction ® j intersects:

%kl -
ny %
M d/%
pangle(®j) = /;1 parea(Zk) COS(Pk' 4.8)

In the equation, M is the number of lights intersected by the ray. The benefit of this ap-
proach is that samples sent towards occluded points are not wasted. The drawback is that a
special ray casting routine is needed to determine all of the light sources that are intersected
by a particular ray.

Rendering scenes with large numbers of lights poses a difficult engineering prob-
lem for direct lighting. Traditionally, a secondary ray would be sent to each light source
for each primary ray, but this is impractical in scenes with hundreds or thousands of lights.
Ward [1991] addressed this problem by evaluating the potential contribution of samples on
all lights without visibility. He then sorted the light sources based on potential contribu-
tion and sent shadow rays to the lights with the highest potential contribution. A fraction
of the potential contribution of untested lights was also included to complete the estimate.
Since Ward’s solution only approximates the contributions of untested lights, it is biased,

however, Shirley et al. [1996] cave an unbiased variant of Ward’s algorithm that probabilis-
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tically selects light sources to sample. Another way to reduce calculations in the presence
of many lights is to cluster light sources into groups. Fernandez et al. [2002] take this ap-
proach, calling each light source cluster a “local illumination environment”, or LIE. Each
LIE caches information about light visibility and irradiance that is used to determine which

shadow rays should be sent.

4.4.3 Multiple Importance Sampling

We have seen that for direct lighting, BRDF sampling is sometimes
superior to light source sampling, and vice-versa. A reasonable
goal would be to design a sampling strategy based on both BRDF
and light source sampling that preserves the good qualities of both
methods. One could simply average Monte Carlo estimates based

on BRDF and light source sampling, but this approach tends to

preserve the bad qualities of both sampling methods as well as the

Figure 4.8: MIS.

good. A better way is to take some samples from each sampling
distribution, but then use the resulting probability distribution to weight the samples. This
key idea is the basis of Multiple Importance Sampling, or MIS [Veach and Guibas, 1995].
As an example of how MIS works, suppose that you want to estimate the direct lighting
integral by choosing half of the samples based on the BRDF and half based on sampling
the light sources. For a given sample direction, ®, let the probability (with respect to solid
angle) that it was generated by BRDF sampling be p;(©;), and let the probability (again
with respect to solid angle) that is was generated by light source sampling be p>(®;).
The actual probability p,,g. that ®; was generated by either technique is then % r1(0;) +
% p2(0;). This value can be used directly as the probability in equation 4.5. Figure 4.8
was generated with this method. Note how the MIS rendering preserves the good qualities
of both BRDF and light source sampling, achieving a high quality reconstruction on the

highlight of the sphere as well as the back wall and floor.
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Figure 4.9: The benefits of multiple importance sampling. Function g is the product of
two terms, f and h. If importance sampling methods exist for both f and 4, samples from
both methods can be combined into a distribution proportional to f + & which is more
proportional to g than f or 4 alone.

Figure 4.9 demonstrates the benefits of MIS graphically. In the figure, function g is
the product of two terms, f and 4. There may not be a straightforward importance sampling
method for g, but if importance sampling methods exist for both f and &, MIS can be
employed to create a sampling distribution proportional to f 4+ h. This sum distribution fits
g much better than f or & alone, leading to reduced variance in the Monte Carlo estimate.

The down side of using MIS is that it is more complicated, and can be slower than
using a single importance function. To make MIS work, a sampler must be able to generate
samples according to each sampling distribution, and determine with what probability an
arbitrary sample would be chosen for each sampling method. This expense is justified,
however, because of the decrease in variance that MIS offers.

The variant of multiple importance sampling just described is called the “balance
heuristic” because the value returned for direction ®; is the same no matter what distri-
bution the sample was drawn from. Surprisingly, however, this is not the only possible
unbiased weighting scheme. Veach and Guibas described several other unbiased weighting
heuristics that sometimes decrease variance more than the balance heuristic, the most pop-
ular being called the “power heuristic”, because it weights samples according to a power

of the probability that they were drawn.
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4.44 Resampled Importance Sampling

MIS can sample the BRDF and incident light terms of equation 4.1
simultaneously, but the resulting distribution is essentially propor-
tional to the sum of the terms rather than the product. An ideal
importance sampling method for direct lighting should be able to
generate samples proportional to the product of the BRDF and in-

cident light rather than just the sum. One way to achieve this goal is

to draw a large number of tentative samples from one distribuition,
and then discarding most of them, leaving a distribution more like Figure 4.9: RIS.

the desired one. Of course, this is only useful if the tentative samples can be evaluated
more quickly than complete samples (otherwise information is just being thrown away).
In direct lighting, ray casting is the most expensive operation, so the typical approach is
to evaluate a large number of samples without visibility, discard most of these samples,
and then evaluate the visibility term for the remainder of the samples. Burke et al. [2005]
described a technique called Bidirectional Importance Sampling (BIS) that calculates the
direct lighting equation in this manner. First, a large number of direct lighting samples are
drawn from an existing importance sampling distribution, and evaluated without visibility.
In a second step, some of the samples are discarded, either by rejection sampling or re-
sampling. The algorithm then evaluates the visibility term for the remaining samples and
weights them to form an unbiased estimate of the direct lighting integral. The resampling
version of BIS is generally to be preferred over the rejection sampling version because
the number of tentative samples per accepted sample can be fixed a priori. Talbot et al.
[2005] showed that the resampling variant of bidirectional importance sampling fits into
the more general category of Resampled Importance Sampling, or RIS. They also demon-
strated several useful extensions to the basic algorithm, for instance showing how to select
the number of tentative samples that should be drawn per accepted sample to achieve near

optimal variance reduction for a given render time.
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As an example of how RIS for direct lighting works, consider the case in which
four tentative samples are taken, and we would like to retain only one of them. RIS begins
by selecting four tentative sample directions ®; ...®,4 through some importance sampling
method. Let the probabilities that the four samples were chosen (with respect to solid angle)
be pj ... pa. Next, the integrand L, (x < —0) f,.(¥ <> x <~ ©®)| cos 0| is evaluted without vis-
ibility for the four directions, producing values fi ... f4. By “evaluated without visibility”
we mean that the first light source intersected by each sample direction is determined, to
calculate L., but no ray is cast to see if the light source is occluded by other scene objects.
At this point, we could cast shadow rays to determine the visibility of the four samples,

Vi ...V4, and construct the standard Monte Carlo estimate:

1 \% V V V.
_(f1 1 fVa Vs fa 4)‘
4\p P2 P30 P4

However, we would like to avoid calculating all but one of the visibility terms, since ray
casting is the most expensive operation. To avoid casting three of the shadow rays, the
resampling step of RIS selects one of the samples to keep. For the sake of argument,
suppose that RIS chooses ®;, with probability g;. Because of the resampling, the actual
probability that ®; was selected by the RIS procedure changes by the factor 4¢q;. At this
point, the algorithm casts a shadow ray in direction ®; to calculate V;, and the resulting

RIS estimate becomes

fivi
4piq1

4.9)

Since the goal of importance sampling is to reduce variance, we would like to
choose g .. .q4 in such a way that the resulting estimate will have the same value no matter

which O is chosen (ignoring visibility). This leads to the following set of equations:

i _ h s fa
P141 p2q92 P393 P4aqa

qg1+q+q3+g4=1 and
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Solving this set of equations yields the optimal probability for the g values:

_ pilfi

= , (4.10)
Zé}:ll’j/fj

Note that even though assigning the g values as just described makes all of the samples
have equal value, as a whole, the RIS estimator still has non-zero variance. This is because
the sum in the denominator of equation 4.10 is not constant between different runs of the
algorithm. Nevertheless, RIS can reduce variance substantially in many circumstances.
Figure 4.9 was rendered with resampled importance sampling, using 64 tentative samples,
and 8 accepted samples per pixel. Figure 4.10 gives a side-by-side comparison of the four
importance sampling techniques that have been discussed. Not surprisingly, RIS performs
better than the other importance sampling techniques in our test scene, even with half as

many final samples.

BRDF (16 spp) Light (16 spp) MIS (16 spp) RIS (8 spp)

Figure 4.10: Importance sampling methods for direct lighting. BRDF sampling tends
to capture glossy surfaces well, whereas light source sampling captures matte surfaces
better. Multiple importance sampling (MIS) can combine the good qualities of BRDF and
light source sampling, and resampled importance sampling (RIS) approximates the product
distribution of BRDF and lighting by taking a large number of tentative samples without
visibility and then probabilistically discarding most of the tentative samples.
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4.5 Sampling Patterns

For most applications a single Monte Carlo sample will not suffice; multiple samples are
needed so that the error in the integral estimate falls into acceptable limits. Generally,
Monte Carlo Integration begins with uniformly-distributed point samples in some primary
sample space, such as [0,1)". These samples are then warped to conform to the domain
of the integrand and the importance function used by the integrator. The manner in which
the initial samples are chosen can have a big impact on the variance of the final estimator.
This section discusses methods to generate good sample patterns to reduce the variance of

multi-sample Monte Carlo estimates.

4.5.1 The Trouble with Random Sampling

The trouble with drawing samples randomly for Monte Carlo integration is that samples
tend not to be distributed as evenly as one would think. For example, consider figure 4.11,

showing 64 samples drawn from a uniform distribution in [0, 1):
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Figure 4.11: Random points.

As can be seen, samples tend to clump together in bunches rather than being evenly dis-
tributed. For comparison purposes, we have superimposed an 8 x 8 grid on the [0,1)?
square. Ideally, each small square should contain one of the 64 samples, but less than half
(only 23) have this ideal number. The unevenness caused by random sample placement

leads to a decreased convergence rate for Monte Carlo integration with multiple samples.
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A classic result from statistics states that the variance of a Monte Carlo estimate with N
randomly drawn samples will decrease at a rate proportional to 1/N. A convergence rate
of 1/N may not seem that bad until one realizes that the variance represents the square of
the error rather than the error itself. The actual expected error decreases according to the
square root of the number of samples, 1/ VN, meaning that to reduce the error by half, the

number of samples must be increased four fold.

4.5.2 Stratified sampling

One way to counteract the clumping that occurs with random sampling is to divide the
integral into a number of pieces and then sample each sub-domain separately. Each sub-
domain of the original integral is called a “stratum”, and the resulting sample pattern is said
to be “stratified”, or “jittered”. Figure 4.12 shows a stratified sampling pattern, once again

with 64 samples:
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Figure 4.12: Stratified pattern.

Mitchell [1996] conducted a thorough analysis of the convergence properties of
stratified MCI in common graphics situations. Mitchell’s results showed that stratified sam-
pling is never worse than random sampling, but that the benefits of stratification quickly
disappear as the dimensionality of the integral increases. Another important result was
that the variance reduction offered by stratification depends on the integrand. In his stud-

ies of 2D integrals, Mitchell identified three common integral types with three different
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convergence rates. Integrals with very smooth integrands received the most benefit from
stratification, with variance reducing at a rate proportional to 1/N2. Moderately complex
integrands with a few discontinuities cutting through them benefited less, converging ac-
cording to 1/N'. Finally, very complex integrands did not benefit at all from stratification
and converged at the familiar 1 /N rate. For this case, the variability of the integrand within
each stratum does not appreciably reduce over the variability of the integrand as a whole,

so convergence does not improve.

4.5.3 Poisson disk sampling.

While stratification improves the evenness of samples compared to random sampling, some
clumping can still occur in stratified patterns because individual samples do not account for
how close samples in neighboring stata might be. An alternative to stratification called Pois-
son disk sampling fixes the clumping problem by requiring all samples to be separated by
some minimum distance. Consequently, samples can never clump together. Interestingly,
this is how photoreceptors are spaced within the human eye. Rods and cones pack evenly
next to each other, but not in a regular pattern. Figure 4.13 shows a Poisson disk sam-
pling pattern. Notice how much more evenly the points are distributed than with stratified

samples.

Figure 4.13: Poisson disk pattern.
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The simplest way to generate a Poisson disk pattern is by a process of “dart throw-
ing”. Samples are generated at random, but if a new sample falls too close to an existing one
it is discarded. Dart throwing can be time consuming, however, so a number of researchers
have developed methods to more quickly generate Poisson disk-like patterns. Mitchell
[1987] created point sets with Poisson disk properties using an error diffusion process sim-
ilar to Floyd-Steinberg dithering [Floyd and Steinberg, 1976]. Later, Mitchell showed how
to generate well spaced sample sets based on a modified dart throwing technique. Instead
of simply discarding samples that are too close to an existing point, Mitchell’s “best candi-
date” algorithm [Mitchell, 1991] generates n candidates for each new sample, keeping the
one that is furthest away from any existing sample. Poisson disk-like patterns can also be
produced by applying Lloyd relaxation [Lloyd, 1983] to an initial random or stratified point
set. Lloyd relaxation works by creating a voronoi diagram of the point set. The points are
then moved to the centers of their respective voronoi cells, and the process repeats. After a
few iterations, the points are quite evenly spaced, and closely resemble a Poisson disk pat-
tern. Because of their importance in Monte Carlo methods, Poisson disk point sets remain
an active area of research. Recent work in this area includes faster generation methods
[Ostomoukhov et al., 2004; Dunbar and Humphreys, 2006; Jones, 2006], and methods that

tile Poisson disk point sets aperiodically [Cohen et al., 2003; Kopf et al., 2006].

4.5.4 Latin Hypercube and Multi-Jittered Sampling

Stratified or Poisson disk point sets may be impractical for high dimensional integrals be-
cause of the number of samples involved. To illustrate, a stratification grid with 8 divisions
per dimension results in 8 samples in 1D and 64 in 2D, but extending the pattern to 3D
requires 512 samples, and in 4D a whopping 4096 samples are needed. Rather than re-
sorting back to random sampling, however, it may be reasonable to stratify each dimension
separately and then randomly associate the dimensions. This strategy is called latin hyper-

cube or N-rooks sampling [Shirley, 1991]. Following this work, Chiu et al. [1994] showed
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how to generate point sets that are both N-rooks and stratified patterns at the same time.
They called the method multi-jittered sampling. Figure 4.14 shows latin hypercube and

multi-jittered point sets with 16 samples each.

L1l e o

Latin Hypercube Multi Jittered

Figure 4.14: Latin hypercube and multi-jittered point sets.

4.5.5 Low Discrepancy Sampling Methods

Parallel to the theory of Monte Carlo integration, which relies on random samples, is the
field of Quasi-Monte Carlo integration, which replaces random samples with determin-
istic, low discrepancy (LD) sampling patterns. The term discrepancy refers to the idea
that the number of samples within a particular region should be proportional to the size
of the region. For example, an LD sampling pattern called the (0,2)-sequence is shown
in figure 4.15. With 16 samples, the (0,2)-sequence places a single sample in five differ-
ent sub-region types of the unit square simultaneously, shown in gray. A number of other
low discrepancy sampling patterns exist, two of which are included in the figure: the Hal-
ton sequence, and the Hammersley point set. Pharr and Humphreys [2004] give a good
introduction to low discrepancy sampling in computer graphics, along with detailed expla-
nations of how several of the low discrepancy sample sets are created. Kollig and Keller

[2002] provide implentations and variance analysis for various LD sampling patterns.
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0, 2) Halton Hammersley

Figure 4.15: Low discrepancy sampling patterns, (0,2)-sequence, Halton sequence and
Hammersley point set.

4.5.6 Correlation Between Pixels

Reusing the same set of samples to evaluate direct lighting over the whole image plane can
lead to distracting artifacts. This is true whether the samples were generated by a random or
deterministic process. The left image in figure 4.16 shows this effect. Correlation between
pixels leads to correlated errors in the pixel integral estimates, which can be distracting to
the human eye. The standard fix for this problem is to use a different set of samples for each
pixel. With random sampling one can simply create a new sample set for each primary ray,
relying on the randomness inherent in the sampling method to break up correlation artifacts.
Low discrepancy patterns, on the other hand, do not have any inherent randomness, so
alternative methods are needed to add variety to them. A simple idea that works fairly well
in practice is to shift the sample pattern by some random amount (modulo 1) each time
it is used. This is called a Cranley Patterson rotation [Cranley and Patterson, 1976]. A
more sophisticated method called Owen scrambling randomizes a sample set by swapping
different subsets of the [0, 1) interval in each dimension [Owen, 1995]. The right image in
figure 4.16 shows the result of randomizing the sampling pattern used by the left image.
Randomization does not reduce statistical error (variance), but perceptual error is reduced

because the error is scattered into high frequency noise that is less distracting to the eye.
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Fixed Randomized

Figure 4.16: Fixed vs. randomized sampling patterns.

4.6 Measuring the Convergence of a Rendering Algorithm

This section describes the error metrics that will be used to measure the convergence prop-
erties of the algorithms in this dissertation. Since the dissertation concentrates on unbiased
rendering, I have chosen to use an objective rather than a perceptual metric as the primary

validation tool.
4.6.1 Color Difference

The first step in defining the difference between two images is to define the difference
between color pixel values. There are a number of methods to calculate the “difference” or
“distance” between two colors, and many of these difference measures would be suitable
for the purposes of this work. After experimenting with several measures, we chose to use a
weighted L1 norm where the weights are proportional to the luminance contributions of the
different color components. In the RGB color space, the luminance of a color C = (r,g,b)
is defined | C|, = 0.299r + 0.587g + 0.114b. Similarly, we define the difference between

two colors, Cy = (r1,g1,b1) and Cy = (r2,82,b2), as follows:
1Cy—Cile = 0.299 [y —ry| + 0.587 |g2—g1| + 0.114 | by — by @.11)

where | - |, denotes the difference between two color values. We use the L1 norm instead

of the Euclidian.norm.to.be.consistent with the definition of luminance.

58

www.manaraa.com



4.6.2 Image Difference

A standard error metric for the difference between two images is the mean squared error
(MSE), or variance (62). For two images A and B with the same pixel dimensions, the

variance is defined as:

1 N

2 2

oO" = — E A,'—B,'C 4.12
Ni 1| | ( )

where o2 is the variance, N is the number of pixels in the two images, and |A; — B;| is
the color difference between pixel i in image A and pixel i in image B. Note how similar
this definition is to the variance described in equation 4.3. It is particularly appropriate to
call equation 4.12 a variance measure if one of the images is the “expected image”, and the
other is an approximation made by a Monte Carlo rendering algorithm.

Although o7 is a valid statistical metric by itself, we would prefer a metric that
describes the relative difference between two images rather than the absolute difference.
This would allow rough comparisons between different rendering algorithms without the
need to render all the same scenes with each method. Consequently, we will report image
difference in terms of the coefficient of variation, which is the standard deviation divided
by the mean image lumance: (o/u). More formally, we define 6/u for images A and B

as follows:

1 N 2
N Z4i:1 |A1_Bi|c

o/ = 4.13)
N Lj=114le

o/ is the reciprocal to another statistical measure of image difference called the signal fo
noise ratio. In this dissertation, we use the coefficient of variation because smaller image

differences map to smaller values, which is an advantage in convergence plots.
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Visual interpretation of o/u. Figure 4.17 gives examples of images that have been
corrupted with different amounts of gaussian-distributed noise. With a o/u of 0.01, the
corrupted images are practically indistinguishable from the originals, even under close in-

spection. On the other hand, with 6 /u = 1.0, there is essentially as much noise as signal,

and the image is probably unusable for most applications.

original o/u=0.01 o/u=0.1 c/u=1.0

Figure 4.17: Images corrupted with different amounts of gaussian-distributed noise. At
o/u = 0.01 the images are virtually noise free visually, even under close scrutiny. At
o /u = 0.1, the images contain roughly the same amount of noise that can be seen in a high
quality movie or television broadcast. Finally, at /u = 1.0, image features are barely
visible through the noise.

4.6.3 Measuring Convergence

Generally, in a Monte Carlo rendering context convergence is measured by comparing a
rendered image to an “accepted” image rendered with many more samples per pixel. In
some cases it may be impractical to render a complete accepted image, however. A simple
way to get around this difficulty is to only render a random subset of the image pixels as an

accepted image. Another way to get around the need for an accepted image is to compare
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two images created with the same number of samples per pixel. This will work if the noise
produced by the rendering algorithm has zero mean and will not be correlated between
different program runs. In this case, we can invoke the variance sum law, which states that
the variance of a sum or a difference of two independent random variables, X and Y, is

equal to the sum of the variances of the two random variables:

0%y = O% +Ov. (4.14)
In the case of the two images, the two variances are equal (the two images were rendered
with the same number of samples per pixel), so ox can be substituted for oy. Making this

substitution, and rearranging a bit yields

bx  px V2

0).'¢ _ OX+Y (4.15)

Finally, since the expected value of the difference of the two images is zero everywhere, we
can estimate the noise level of the rendered images by computing 6/ between the images,

and then dividing this value by /2.
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Chapter 5

Two Stage Importance Sampling for Direct Lighting

A version of this chapter was published as:

David Cline, Parris K. Egbert, Justin F. Talbot and David L. Cardon. Two Stage Importance

Sampling for Direct Lighting. Eurographics Symposium on Rendering, 2006.

Abstract. We describe an importance sampling method to generate samples based on the
product of a BRDF and an environment map or large light source. The method works by
creating a hierarchical partition of the light source based on the BRDF function for each
primary (eye) ray in a ray tracer. This partition, along with a summed area table of the
light source, form an approximation to the product function that is suitable for importance
sampling. The partition is used to guide a sample warping algorithm to transform a uniform
distribution of points so that they approximate the product distribution. The technique is
unbiased, requires little precomputation, and we demonstrate that it works well for a variety
of BRDF types. Further, we present an adaptive method which allocates varying numbers

of samples to different image pixels to reduce shadow artifacts.
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5.1 Introduction

Increasingly, image based lighting is being used for rendering. Image based lighting offers
a number of advantages over simple lighting techniques such as directional or point lights.
Spatially varying image based lighting provides a more realistic lighting environment, so
images rendered with it often have a more realistic appearance. Using light probes as
lighting allows virtual objects to be rendered as if they were actually located in the imaged
location. This technique is employed often in movies, where rendered objects need to be

seamlessly integrated into live action shots.

5.1.1 Importance Sampling for Direct Lighting

The problem that this paper addresses is how to solve the direct lighting equation. In a ray

tracing context, to solve for direct lighting each primary ray must evaluate the integral:
Lix—P) :/ Lo(x——@) f,(¥ > x < ®)| cos 0]dO. 5.1)
Q

In this equation, x is the point hit by the primary ray, L, represents the incoming radiance
at point x, f, is the BRDF function, and 0 is the angle between the surface normal at x and

the outgoing direction, ©.

Monte Carlo Integration. A common approach to evaluate the direct lighting equation
is to use Monte Carlo integration, which replaces the continuous integral with the average

of N Monte Carlo samples:

) fr(¥ e x < 0;)|cos 0]
p (©;) '

1 XL -9;
L(x—W¥)~ N Z (x==6, (5.2)
Jj=1

Importance sampling attempts to minimize the variance of the above expression by choos-

ing a sampling distribution to make the terms of the sum as constant as possible.
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Light source and BRDF sampling. Many importance sampling techniques for direct
lighting concentrate on either sampling the light source or the BRDF. For example,
Burke [2004] described two methods to distribute samples according to the brightness
of an environment map, based on cdf inversion and the alias method. Other research
[Kollig and Keller, 2003; Agarwal et al., 2003; Ostomoukhov et al., 2004] has tackled di-
rect lighting from environment maps by approximating the illumination with a set of point
lights (sampling directions). More recently, Debevec [2005] presented a simple technique
to generate point lights to approximate environment lighting using a summed area table of
the environment map. Our algorithm also uses a summed area table, but we are able to
approximate the product distribution, not just the incident light term.

Methods that generate samples based solely on illumination do not work well for
highly specular surfaces. In many situations it is more efficient to sample according to
the BRDF function rather than the incident illumination. Some analytical BRDFs can be
directly importance sampled, including the Blinn model [Blinn, 1977], the Ward model
[Ward, 1992], the Lafortune model [Lafortune ef al., 1997], and the Ashikhmin model
[Ashikhmin and Shirley, 2000]. Besides analytical BRDFs, importance sampling can be
employed with sampled BRDFs. Lawrence, Rusinkiewicz and Ramamoorthi [2004] de-
scribed a factored, tabular representation for BRDFs that is both compact and amenable to

importance sampling.

Sampling a product distribution. Sampling according to one of the terms of the lighting
equation can reduce variance, but it is more advantageous to generate samples
based on all of the terms, rather than just one. Multiple importance sampling (MIS)
[Veach and Guibas, 1995] can sample the BRDF and lighting simultaneously, but the re-
sulting distribution is more akin to the average of the terms rather than the product. Ideally,
an importance sampling algorithm should be able to generate samples according to the

product distribution.
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Burke, Ghosh and Heidrich [2005] described a technique called bidirectional im-
portance sampling (BIS) that can sample the product of an environment map and the BRDF,
based on rejection sampling. The rejection sampling can be costly, however, and requires
an unknown number of tries to produce samples from the product distribution. A second
form of BIS that can produce samples in a deterministic amount of time replaces rejection
sampling with resampling, but the resulting samples are only approximately distributed ac-
cording to the product. Talbot, Cline and Egbert [2005] generalized this second form of
BIS, placing it into the more general category of resampled importance sampling (RIS).
Resampling methods can also be costly, however, since they rely on taking a large number
of tentative samples, most of which will be discarded.

Recently, Clarberg et al. [2005] presented an algorithm called Wavelet Importance
Sampling (WalS) that samples products of wavelet functions. Their algorithm uses a prop-
erty of wavelets that allows a wavelet product to be evaluated in a top-down fashion, and
they introduced a warping technique that transforms a uniform distribution of points to the
product distribution using the wavelet product as a guide. WalS produces very impressive
results, but has a number of shortcomings that make it impractical in some situations. WalS
requires all BRDFs in the scene to be resampled as wavelets, which may be impractical for
scenes with large numbers of BRDFs. Also, WalS requires the wavelet functions to share
a common coordinate system. In the case of environment maps, they accomplish this by
storing a separate wavelet decomposition for each possible orientation of the environment
map. Our two stage importance sampling algorithm can be thought of as a variant of WalS
that does not require a wavelet product to drive the sample warping. Instead, we use a
hierarchical partitioning of the environment map similar to the probability trees described

by McCool and Harwood [1997].
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5.1.2 Two Stage Importance Sampling

This section gives an overview of our new algorithm to perform importance sampling for
direct lighting. The algorithm proceeds in two stages, so we call it two stage importance
sampling, or just two stage sampling. The first stage creates an approximation to the prod-
uct of the BRDF and the environment map suitable for importance sampling. The approxi-
mate product consists of (1) a summed area table of the environment map, times the cosine
of the angle of inclination to compensate for foreshortening at the poles, along with (2) a
hierarchical partition of the environment map annotated with BRDF values at the region
corners. The second stage of the algorithm uses the summed area table and environment
map partition to warp a set of uniformly distributed points so that they approximate the
product distribution (BRDF X incident light). Both the hierarchical partitioning of the en-
vironment map and the sample warping are performed for each primary ray in a ray tracer.

Figure 5.1 gives high level pseudocode for two stage importance sampling.

Two Stage Importance Sampling

Create a summed area table of the light source.
For each primary ray
1. Create an approximation to the product of the BRDF and the light source.
2. Warp a set of uniformly-distributed samples to approximate the product distribution.

Figure 5.1: Two stage importance sampling algorithm.

Benefits of the new approach. Two stage importance sampling offers a number of ben-
efits over existing techniques to sample according to the product distribution, such as RIS
and WalS. It requires very little precomputation, just a summed area table of the environ-
ment map. Furthermore, two stage sampling can work with both sampled and analytical
BRDFs, and since BRDFs do not need any preprocessing, it can handle scenes with many

BRDFs. Two stage sampling does not even require the ability to importance sample the

67

www.manaraa.com



BRDF function. All that is needed are the BRDF peaks. Since two stage sampling does not
use rejection sampling or resampling, it preserves the stratification of an input sampling
pattern better than algorithms that discard some of their samples, such as RIS. Finally, two
stage sampling does not require the terms in the product to have the same coordinate sys-
tem, so our algorithm could easily be adapted for other large light sources besides spherical

environment maps.

5.2 Partitioning the Light Source

This section describes how to create a hierarchical partitioning of an environment map

based on the BRDF function.

5.2.1 Environment Map Encoding

As a preprocessing step, we create a copy of the environment map as a summed area table
[Crow, 1984]. This allows rectangular regions within the map to be summed with just four
table look-ups. Creating the summed area table typically requires less than 1 second. In
our implementation, the summed area table stores the luminance of all of the static terms
in the product (terms that are constant within the coordinate system of the environment
map). For a spherical environment map in latitude, longitude format, we store the value in
the environment map times the cosine of the angle of inclination, which compensates for
the foreshortening that occurs near the map poles. This is the same encoding suggested by
Debevec [2005]. To maintain precision, the summed area table is stored as 64 bit floating

point values.

5.2.2 Partitioning the Environment Map

Two stage importance sampling relies on a piece-wise linear approximation of the BRDF
and all of the terms of the product that are not included in the summed area table. This

approximation.is.created.independently for each primary ray. In the case of a spherical
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environment map, the terms not included in the summed area table are the BRDF and
cosine from equation 5.1: f,(W <« x <> ®) |cos 8|. For brevity, we will refer to this value
simply as f.

Our algorithm approximates the product function by partitioning the environment
map into disjoint regions using an axis-aligned BSP tree. Nodes in the BSP hierarchy
represent rectangular regions in the environment map, and each node stores the value of f
at its four corners. Consequently, the approximation to the product becomes the product of
the values stored in the summed area table and the bilinear interpolation of f from the leaf
nodes of the BSP tree. Figure 5.2 shows one of these leaf nodes. Note that although the
values of f are interpolated across the region, the values stored in the summed area table
are represented exactly.

(xlayl)

Joi fin

foo k
(%0s o)

Figure 5.2: Example region R, labeled with min and max extents along with f values at
the corners.

Creating the root node. The first step in partitioning the light source is to create a root
node that will encompass all non-zero parts of the product function. One obvious choice
would be to include the entire environment map as the root. However, we can easily find
a smaller rectangle that encompasses all parts of the environment map that are in the same
hemisphere as the surface normal. Assuming that the pixel coordinates of the normal in the
environment map are (x,,yy,), and w and & are the width and height of the environment map

in pixels, the bounds of this rectangle are (0, max(0, y, — h/2)) and (w, min(h, y, +h/2)).

69

www.manaraa.com



After creating the root node, we make an initial partition by subdividing at two
locations. First, we subdivide the root node at the normal location, (x,,y,), and half the
width of the environment map away from the normal, ((x, +w/2)%w, y,). Subdividing at
((xp+w/2)%w, y,) as well as the normal has the benefit that the cosf term of the product
is monotonic in all of the resulting regions. Since the hierarchy is a binary tree, we split at
a particular location by first horizontally splitting the leaf node containing the position, and
then vertically splitting both of the new nodes created by the first split. Figure 5.3 shows

the initial partition.

min(h, y,+h/2), 0
n
T 9

T(O, max (0, Iyn—h /2))

Figure 5.3: Initial partition of the environment map. Two initial splits divide the root node
into six regions, and include the peak of the cos 8 term in f as one of the region corners.

Subdividing at the BRDF peaks. After the initial partition of the environment map has
been made, we subdivide the leaf nodes at the peaks of the BRDF. The peak locations that

we use for different BRDF types are as follows:

e The Lambertian model does not need any other peaks besides the normal direction.

e The Oren-Nayar model [1994] was designed to simulate retro-reflection, so we add

the incident direction as a peak for this model.

e The Phong model [1975] and Blinn microfacet model [1977] have a glossy lobe
centered around the reflection vector, so we add the reflection vector as a peak for

these models.
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e The Lafortune model [1997] consists of a number of generalized cosine lobes, each
of which has a well-defined peak location. The peaks of the lobes are found by trans-
forming the incident direction to the local shading coordinate system. The trans-
formed incident direction can then be directly scaled based on the lobe parameters to

produce the lobe peaks.

e The Ashikhmin anisotropic model [2000] produces a long, thin specular lobe that
traces out a cone of directions, rather than being centered around a single point. For
this BRDF, we first add the reflection vector as a peak, since this is the brightest point
on the BRDF. In addition, we add nine peaks along the cone of directions traced out
by the specular lobe, if the anisotropy is large enough. In our implementation, we
add the extra nine peaks of if n, /n, or n, /n, is greater than 3, where n, and n, are the
anisotropy parameters of the BRDF. Figure 5.2.2 shows the local surface geometry
for the Ashikhmin model where n, < n,. In the case where n, < n,, the specular
lobe of the BRDF stretches out into a cone of directions aligned with the u axis
of the local coordinate system, which includes the reflection vector as the brightest
point. We define nine “peak directions” to represent this conical lobe as follows:
As in figure 5.2.2, let (u,v,n) be the local coordinate system of the surface, and let

(ry,ry,rn) be the reflection vector defined in the local coordinate system. If n, < n,,

r = (¥u, v, 7n)

A\

Figure 5.4: The specular lobe of the Ashikhmin model stretches
over a cone of directions rather than being centered around a single
peak direction.
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the nine peaks, peak ... peakg, are defined by

i . T
peak; = (ru, cos— \[ 2412, sin-- \/r5+r,%) ,

If n, < ny, the conical specular lobe is aligned with the v axis rather than the u, and

the nine peaks are defined by

TS, TS,
peak; = (c0s§ r,%—kr%, ry, sing r,%—kr%).

Peaks for more general reflection models. For multi-component reflection models, we
use all of the peaks defined by the components. For unknown or measured BRDFs, we
start with the reflection and retro-reflection vectors and then importance sample the BRDF
to find additional “peaks”. In our implementation, we sample the BRDF N /4 times, where
N 1s the number of samples to be taken. Each of the BRDF samples is then added as a new
peak if the value of f at the sample location is greater than the average of f at the corners

of the leaf node that the sample falls in.

Splitting region neighbors. Whenever a region is split, we check the neighboring regions
that border the split location to see if they should be split as well. In particular, if the two
corners of the neighbor region that are adjacent to the split have f values which sum to
less than f;,;;, then we cascade the split into the neighbor region. For example, suppose
that the region directly below region R in Figure 5.5 was split horizontally at location x;,;;,
with xo < Xsp1 < x1. Then if the value of f at (x,p,y0) is greater than foo + f10, we split
region R horizontally at location x;,;; as well. Note that in a spherical environment map
the x axis wraps around, so that regions on the leftmost part of the environment map are
neighbors of regions on the rightmost part. This extra splitting helps in the case of specular

BRDF lobes that are not axis-aligned.
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foo
(x> Y0)

Figure 5.5: Cascading region splits. In the diagram, the region below region R has just
been split horizontally at location x;,;;;. The region splitting algorithm cascades this split
into region R if fy,1; > foo + f1o0-

Subdividing based on split potential. At this point, we have a hierarchy that includes
the peaks of the BRDF as region corners, but it still may not be a good approximation of
the product. We can improve the approximation by splitting some of the regions that do not
fit the product well.

For a region R with corners (xg,yo) and (x1,y;), and f values fy...f11 (refer to
Figure 5.5), we define a heuristic called the “split potential” that determines which region
should be split to improve the product approximation the most. We base our heuristic on
the idea that large and bright regions, and regions in which f varies a lot should be split

first. More formally, we define the split potential, p;;;; (R), as

Psplit(R) = o(R) sum(R) area(R), (5.3)

where sum(R) is the sum of the environment map over region R, area(R) is the area of the

region, and o(R) is the standard deviation of the f values at the corners of R:

1
Gf(R> = E \/(fOO - fave)z + (flO - fave)z + (fOl - fave)z + (fll - fave)z-

Our strategy is to perform a fixed number of node splits after creating the initial hierarchy,

the same as the number of samples that will be taken, always splitting the leaf node with
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the highest split potential. This has the effect that each additional sample improves the
sampling distribution, so that the convergence rate increases as more samples are added.
Once again, whenever a region is split, its neighbors are checked to see if they should be

split as well.

Split direction. In addition to deciding which region to split, the algorithm must decide
whether to split the region along the x or y axis. One possibility would be to always split
the region along the longest dimension, but we have found it better to choose the split axis
based on the values of f as well as the axis lengths. Referring to Figure 5.5, a region will

be split in the x direction if

((fio— foo)* + (fir — for)?) (x1 —x0) > ((for — foo)* + (fi1 — f10)*) 1 —0).  (5.4)
Otherwise, the region will be split in the y direction.

Calculating region weights. As part of the sample warping algorithm, each region in
the hierarchy must have an approximation to its contribution to the total product integral,

which we call the region weight. For a leaf region L the weight is given by

weight (L) = sum(L) (foo + fio+ for + f11)/4. (5.5)

For a non-leaf region R, the weight is obtained by summing the weights of its children. As
a convenience for the warping algorithm, we store two other values in non-leaf nodes in
the hierarchy — the probability of choosing child A, prob(A,R), and the fraction of the area

that is taken up by child A, areaFraction(A,R):

prob(A,R) = weight(A) /weight (R) (5.6)
areaF'raction(A,R) = area(A) /area(R). (5.7)
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Figure 5.6 gives pseudocode for the partitioning algorithm and shows example partitions

for different BRDF types.

5.3 Hierarchical Warping (revisited)

This section describes the warping algorithm that forms the second stage of two stage im-
portance sampling. Our warping algorithm is based on the technique presented by Clarberg
et al. [2005] to transform a uniform distribution of points to the product distribution. The
main difference between our algorithm and the one presented by Clarberg et al. is that in
our algorithm warping is controlled by the environment map partition described in section
5.2 rather than a wavelet product. Of course, this means that our algorithm only approxi-
mates the product distribution, but it also means that our algorithm requires minimal pre-
computation and storage (just a summed area table of the environment map). Also, since
two stage importance sampling does not rely on a discrete sampling of the BRDF, it can
work directly with analytical or sampled BRDFs in their native formats. Other differences
include the fact that we warp one sample at a time rather than groups of samples, and the
fact that regions do not always divide exactly in half in the environment map partition.

As an illustration of how the sample warping works, consider figure 5.7. The figure
depicts a region, R, of the environment map that has two children. The left child of the
region, A, shown in gray, contains 70% of the area of R, and the right child, B, shown in
white, contains 30% of the area of R. Now, suppose that the algorithm wants to create a
distribution that puts 20% of the samples in child A, and 80% of the samples in child B.
The warping starts with a uniform distribution of samples, as shown in the left image. It
then stretches the leftmost 20% of the samples to cover 70% of the area of R, and squeezes
the remaining 80% of the samples to fit into 30% of the area, as shown in the right image.
This process can then be repeated on A and B, and so on, to create any desired sampling

distribution.
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Environment map partitioning algorithm

For each primary ray

Create the root node (Fig. 5.3).

Split the root at (x,,y,) and ((x, +w/2)%w, y,).

Split leaves at BRDF peaks (and neighbors as needed).

For i=1 to # of samples per primary ray
Find the leaf node, R, that maximizes pyp;;; (€q. 5.3).
Split R along the axis specified by equation 5.4.
Split the neighbors of R as needed (Fig. 5.5).

Calculate sampling weights for all regions (eq. 5.5, 5.6, 5.7).

Figure 5.6: Environment map partitioning algorithm and example partitions. The left
images show the product of a highly diffuse Oren-Nayar BRDF in the Eucalyptus Grove
environment (top), and the approximation made by the partitioning algorithm (bottom).
The right images show a more specular BRDF that uses the Blinn microfacet model in
Galileo’s Tomb. In both cases, the partitioning algorithm produces a good approximation
to the product. Note particularly how the split potential heuristic “homes in” on the specular
lobe of the Blinn BRDF.
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% area % area

70% 30% 70% 30%
" R .7 - R ¢ .7

20% 80% 20% 80%
% samples % samples

Figure 5.7: One step of the sample warping algorithm. Here, an environment map region
R has two children, with the left child, A, shown in gray, and the right child, B, shown in
white. The samples allocated to R are originally distributed evenly (left image), but the
sample warping stretches 20% of the samples to cover the child A, and the remaining 80%
of the samples are squeezed to fit into child B (right image).

As previously stated, our warping algorithm guides the sample warping with the
environment map partition described in section 5.2. The warping starts at the root node of
the environment map partition with a sample (s,?) that is uniformly distributed in [0, 1)?
and a probability that is set to the area of the environment map divided by the area of
the root node. The algorithm next decides which child of the root that the sample be-
longs to based on the value of prob(A,R) stored in the root node. It then warps s or ¢
depending on the split axis, and updates the probability for the sample. For simplicity,
assume that the root is split on the x axis, so that s should be warped. If s < prob(A,R),
then s is warped by dividing by prob(A,R), transforming it into the local coordinate sys-
tem of child region A. If s > prob(A,R), s is set to (s — prob(A,R))/(1 — prob(A,R)),
transforming it into the local coordinate system of child B. The sample probability is
updated in a similar manner. If s < prob(A,R), the sample probability is multiplied by
prob(A,R)/areaFraction(A,R), and if s > prob(A,R), the sample probability is multiplied
by (1 — prob(A,R))/(1 —areaFraction(A,R)), reflecting the change in probability density

in the two child regions.
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This warping process repeats on the chosen child node, and so on. Once the leaf
level of the hierarchy is reached, a second warping routine takes over, warping the sample
down to the pixel level in like manner, constructing virtual environment map regions below
the leaf level to do the warping. Figures 5.13 and 5.14 in appendix SA give code for the
two sample warping routines. After a sample has been warped, it can be used directly to
define a Monte Carlo sample for equation 5.2. Since the warping routine keeps track of the
probability with which the sample direction was generated, Monte Carlo estimates made in

this manner are unbiased.

5.4 Convergence to the Product Distribution

A note about our error metric. To test convergence we are using an error metric called
the “coefficient of variation”, which is defined as the standard deviation divided by the
mean, 6/ (RMSE / mean pixel value). Since this value is a scalar multiple of o, it is just
as valid a statistical measure as using o or ¢ directly. However, it also provides an intuitive
metric for how much visual noise exists within an image. Based on our observations, a good
rule of thumb seems to be that an image (with Gaussian noise spread evenly over the image

plane) will be nearly flawless visually if 6 /u is less than about 0.01.

Pseudo-random number sequences. For all sampling methods in all of the experiments
in the paper, we used Hammersley point sets that were randomly shifted to avoid
correlation artifacts (called a Cranley-Patterson rotation [Cranley and Patterson, 1976;
Kollig and Keller, 2002]). The Hammersley point set has several properties that make it
well suited for our application. First, it can create point sets of arbitrary size, not just pow-
ers of 2 or n x m. Second, it consistently produced the lowest error of the sampling methods

that we tried, including random and jittered point sets, and scrambled (0,2)-sequences.
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Figure 5.8: (a) Convergence of two stage sampling (solid markers) vs. multiple importance
sampling (hollow markers) for different BRDF types. The “Blinn” scene uses the Blinn
microfacet model with a roughness of 0.02. “Ashikhmin” uses the Ashikhmin anisotropic
model with u and v roughnesses of 0.001 and 1.0, respectively. “Lafortune” is a fit of the
Lafortune model to measured skin reflectance. (b) Convergence for different peak finding
methods: sampling the BRDF distribution to find peak directions (hollow markers), and
explicit enumeration of BRDF peaks (solid markers).
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Convergence of two stage sampling. To get a feel for how quickly two stage sampling
converges to the product distribution, we rendered a number of spheres with different
BRDFs using two stage importance sampling and multiple importance sampling in the
Galileo’s Tomb environment. Figure 5.8(a) shows the results of these experiments for three
different BRDFs. Not only does our algorithm have a lower error than MIS for these exam-
ples, but the rate of convergence is much better as well. For example, two stage importance
sampling converges at a rate of N~!!7 for the Blinn scene, N9 for Ashikhmin, and
N~998 for Lafortune. Compare this to MIS, which converges according to N—0:64, N—0-70
and N~977 for the same scenes, a much slower rate. Our algorithm is able to achieve such

high convergence rates because increasing the number of samples actually improves the

sampling distribution.

Convergence for different peak finding methods. Figure 5.8 demonstrates the conver-
gence of two stage sampling when the BRDF peak directions are known. However, peak
directions may not be easily computed for some reflection models, such as sampled BRDFs.
In section 5.2.2, we advocated BRDF importance sampling as an alternative method to find
peak directions when they are not easily computed. To test the effectiveness of this alter-
nate procedure, we re-rendered the scenes from figure 5.8 using BRDF sampling to find the
peak directions. To make the comparison fair, we did not include the reflection or retro-
reflection vectors as initial peaks, since the Blinn and Ashikhmin model both have strong
peaks around the reflection vector. Figure 5.8(b) plots the results of using BRDF sampling
to find peaks (hollow markers) alongside the results from figure 5.8 for comparison. As
can be seen in the figure, the Lafortune scene performs almost identically for both peak
finding methods. The Blinn scene starts out a little worse with the alternate peak find-
ing method, but quickly overtakes the performance of the standard peak finding method.
The Ashikhmin scene, on the other hand, does not perform as well with the alternate peak

finding method, likely because of the complexity of the conical specular lobe, but it still
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outperforms MIS by a wide margin. These results suggest that BRDF importance sampling

can be an effective general peak finding method for many BRDF types.

5.5 Variable Samples

Section 5.4 describes the performance of two stage importance sampling in the absence of
shadows. However, most scenes contain shadows and other features that pose difficulties
for a Monte Carlo sampler. Penumbra regions are particularly prone to noise. A desirable
goal would be to assign different numbers of samples to different parts of the image to
distribute noise more or less evenly over the entire image plane.

We achieve this goal by allocating more samples to pixels that are likely to have a
high variance, and less samples to pixels likely to have a low variance. To do this, we need
an estimate of the standard deviation of samples for the current pixel, 0,, and the average
standard deviation over all pixels, 0,,.. We obtain 0, 1n a preprocessing step, computing
the average standard deviation for a small random subset of the pixels in the image (1024
in our implementation). G, is computed as a running average over previous samples. It’s
value is set to zero initially, and after a pixel (primary ray) has been processed, the value is
updated using the formula

0, =0.756;, + 0.250ix1 (5.8)

where G,y is the sample variance of the pixel just processed. This process is similar to
the variance tracking method used for efficiency optimized Russian roulette in bidirectional
path tracing [Veach and Guibas, 1994], except that we are using the value for a different
purpose.

At this point, we need to determine a number of samples to use for the next pixel.
To make the sample allocation robust, the number of samples for a pixel is always set

to at least half of what it would be in the fixed case. For the other half of the samples,
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Fixed

Variable

Variable + redo

Figure 5.9: Fixed and variable sampling rates. The left column of images shows renderings
made with different sampling strategies in the Galileo’s Tomb environment, and the right
column shows error in green and the number of samples allocated to different pixels in red.
All renderings use about 16 samples per pixel on average. Fixed rate sampling concentrates
errors in the penumbra regions of the image (o /u = 0.0446, 25.5 sec.). Variable sampling
spreads the error more evenly, and overall error is reduced (o /1 = 0.0409, 25.9 sec.). Note
how samples concentrate in the high error regions. Finally, re-rendering the few pixels that
significantly overshoot their variance estimates gets rid of most of the highest error pixels
(o/u =0.0366, 27.3 sec.).
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the algorithm must decide how many to allocate to each pixel based on o,. We could
use the variance analysis results from Mitchell [1996] or Kollig and Keller [2002] as a
guide to determine how many samples to allocate to different pixels, but this would lead
to a different expression for each input sequence type. Instead, we make the rather crude
assumption that the standard deviation will decrease as N —1 and allocate the second half

of the samples accordingly. Thus, the number of samples that we allocate to a pixel is

M:g(l-i- G”), (5.9)

where N is the average number of samples that should be allocated to each pixel. Reallo-
cating samples in this way tends to decrease statistical error slightly, but perceptual error
is reduced much more, since the sample reallocation spreads the error more or less evenly
over the image plane. Allocating variable samples as just described does not introduce
bias since information from the current pixel does not influence the variance estimate, o),
[Kirk and Arvo, 1991].

A problem that can occur when using variable samples is that the variance estimate,
0p, may not be accurate. This can happen at object edges, for instance. Our solution is
to re-render those few pixels (about 5%) in which the actual variance within the pixel is
much greater than the estimate. Specifically, if Gpi; > Op + Ogye, WE TESEL G) 1O Opirels
and render the pixel again. Although this step adds a slight bias to the solution, it is quite
adept at eliminating most of the highest error pixels. Figure 5.9 shows a scene rendered

with fixed and variable numbers of samples.
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5.6 Results

We have implemented two stage importance sampling as an extension to the PBRT ren-
dering system [Pharr and Humphreys, 2004]. PBRT supports a variety of analytical BRDF
models which we used to validate our algorithm, including the Blinn, Ashikhmin, Lafor-

tune and Oren-Nayar models.

Comparison with other robust sampling algorithms. Figure 5.12 compares our two
stage sampling algorithm to multiple importance sampling (MIS) and resampled impor-
tance sampling (RIS). For RIS, we use multiple importance sampling to generate 2 tentative
samples per accepted sample. The number of tentative samples per accepted sample in our
study, 2, was chosen by trial and error to maximize image quality vs. render time. Burke,
Ghosh and Heidrich [2005] were able to quickly generate dozens of tentative samples per
accepted sample using the Phong model. We have found the expense of generating samples
for arbitrary BRDFs and evaluating them without visibility in PBRT to be comparatively
large, about 1/3 the cost of shadow queries. This is more in line with the results reported
by Talbot, Cline and Egbert [2005].

We do not presently have an implementation of wavelet importance sampling to
directly compare with our algorithm, but we can simulate WalS using our algorithm by
greatly increasing the number of region splits in the environment map. The resulting prob-
ability distribution comes very close to the actual product distribution, and thus mimics
WalS quite well. WalS render times were approximated simply by copying the timing re-
sults from MIS. Note that the timing results do not include the substantial startup costs of
WalS. As can be seen in the table of images, two stage importance sampling displays a lot
of noise at very low sample counts, but it quickly converges. Although we cannot expect
to surpass the convergence rate of WalS, our algorithm does start to become competitive
with it in terms of quality per number of samples after just a few dozen samples per pixel,

without the long preprocessing times needed for WalS.
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Scenes with large numbers of BRDFs. Figure 5.10 shows a scene in which the specular
roughness parameter is controlled by a texture map. This scene would be impractical for
WalS because each surface point potentially has a BRDF with a different shape. By con-
trast, two stage importance sampling has no difficulties with the scene because it does not

need to preprocess BRDFs.

Figure 5.10: Scene with a spatially varying specular exponent. This scene literally contains
hundreds of different BRDF shapes. The scene was rendered with 4 primary rays per pixel
and 32 two stage samples per primary ray at a resolution of 1024 x 512. Render time was
895 seconds.

BRDF and light source sampling alone. For some scenes, BRDF or light source sam-
pling alone may perform better than MIS. However, these methods are not robust to changes
in BRDF and lighting. For example, light source sampling performs well on the scene in
figure 5.12 (6 /u = 0.038 vs. 0.030 for approximately equal time using our algorithm),
but the performance of light source sampling drops quite dramatically if the diffuse floor is
changed to a glossy Blinn model with a roughness of 0.1. In the changed scene, both
light source and BRDF sampling perform poorly, while our algorithm remains robust
(o/p =0.243, 0.206 and 0.041 for BRDF sampling, light source sampling, and our al-

gorithms respectively).Table 5.1 summarizes these results.
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o /u (Diffuse) o/u (Glossy)

BRDF (64 spp) 0.300 0.243
Light Source (64 spp) 0.038 0.206
Two Stage (32 spp) 0.030 0.041

Table 5.1: Overall error of BRDF, light source and two stage importance sampling for
predominantly diffuse and glossy scenes.

5.7 Conclusions and Future Work

In this paper we have presented a new importance sampling technique for direct lighting
called two stage importance sampling. The technique is unbiased, and we showed that it
works well for scenes with complex BRDFs and spatially varying environment map light-
ing. We showed that two stage importance sampling outperforms multiple importance
sampling (MIS) and resampled importance sampling (RIS) in a number of rendering con-
texts, and that the new algorithm compares favorably with wavelet importance sampling
in terms of quality per number of samples at fairly low sample densities, while requiring
substantially less precomputation. In addition, we described a novel technique to allocate
variable numbers of samples to different pixels in a rendered image to reduce noise in
shadow areas, and showed that the new sample allocation technique can decrease statistical
and visual error in rendered images.

There is a fairly large overhead associated with partitioning the light source, and
this limits the number of primary rays that can be cast per pixel. It would be interesting
to cast a larger number of primary rays, and then use RIS to limit the number of product
approximations that must be evaluated. Another idea would be to reuse partitions between
primary rays when the BRDF setup is similar enough. Currently, our product approxima-

tion does not account for color information because the f values and the summed area table

86

www.manaraa.com



only store luminances. We could incorporate color into our algorithm by storing a color
summed area table and color f values. Our current implementation uses a very simple
rule to determine the number of regions to split when partitioning the environment map
(the number of splits equals the number of samples). There may be better heuristics for
the number of splits in terms of image quality vs. time. Finally, we note that while our
algorithm to allocate different numbers of samples to different pixels is useful, it does not
take directional information into account. As the algorithm now stands, shadow regions ac-
count for the majority of the noise at sample rates above a few dozen per pixel, so improved

anti-aliasing for shadow regions would be of great benefit.
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Figure 5.11: Convergence of two stage importance sampling in terms of render time.
The chart plots image quality against render time for multiple importance sampling (MIS),
resampled importance sampling with two tentative samples per accepted sample (RIS 2),
our two stage importance sampling algorithm (2 Stage), and a simulated version of wavelet
importance sampling (WalS). For comparison, we have plotted WalS against estimated
render time (solid diamonds), and using the same timing as two stage sampling (hollow
diamonds). Although WalS beats our algorithm in terms of quality per unit time (if we
don’t count startup time) this is mainly because WalS can generate samples more quickly.
When we compare using number of samples instead of render time (hollow diamonds),
our algorithm starts out worse, but quickly converges to within a few percent of the noise
level of WalS. Note also that render times for WalS do not include preprocessing. A major
advantage of our algorlthm over WalS is that we have extremely low startup time (less than

econ vherea erg et al. [2005] reported startup times of more than an hour for
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Figure 5.12: The table of images gives a quality comparison for approximately equal
i age importance sampling and other sampling methods.
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Appendix SA: Sample warping routines.

void warpSamplel(float &s, float &t, float &prob, Region *R,
SummedAreaTable &sumTable)
{

prob = sumTable.width * sumTable.height / (float)R->area();
while (R->hasChildren()) {
if (R->splitAxis == X_AXIS) { // SPLIT ON X AXIS
if (s < R->probA) { // SIS ON MIN X SIDE
s /= R->probA;
prob *= R->probA / R->areaFractionA;
region = R->childA;
}else { /SIS ONMAX X SIDE
s =(s — R->probA) / (1 — R->probA);
prob *= (1 — R->probA) / (1 — R->areaFractionA);
R = R->childB;
}
}else { // SPLIT ON Y AXIS

/I'Y CASE OMITTED FOR BREVITY

}
}
warpSample2(s, t, prob, R->x0, R->y0, R->x1, R->yl,
R->f00, R->f10, R->f01, R->f11, sumTable);

Figure 5.13: Warping Algorithm (part 1). The WarpSamplel routine is called with s
and ¢ uniformly distributed in [0,1)2, and R set to the root node in the hierarchy. When
warpSamplel returns, s and ¢ are still in [0,1)2, but are now approximately distributed
according to the product distribution, and prob contains the probability that the resulting

point was chosen in terms of solid angle.
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void warpSample2(float &s, float &t, float &prob,
int x0, int y0, int x1, int y1,
float f00, float £10, float f10, float f11,
SummedAreaTable &sumTable)

float fOmid, f1mid, fmidO, fmid1;
float fave A, faveB, areaFractionA;
float sumA, sumB, probA, cosPhi;
int xmid, ymid,

while ((x1—x0) > 1 || (y1—y0) > 1) {
if (x1—x0 > y1—y0) { // SPLIT ON X AXIS

/I X CASE OMITTED FOR BREVITY

}else { //SPLIT ON Y AXIS
ymid = (yO+y1)/2;
areaFractionA = (ymid—y0) / (float)(y1—y0);
fOmid = fOO0 + areaFractionA * (f01—£00);
flmid = f10 + areaFractionA * (f11—£10);
faveA = f00 + f10 + fOmid + f1mid;
faveB = fOmid + f1mid + fO1 + f11;
sumA = sumTable.sum(x0, y0, x1, ymid) * faveA;
sumB = sumTable.sum(x0, ymid, x1, y1) * faveB,;
probA = sumA / (sumA+sumB);
if t <pA){ //TISONMIN Y SIDE
t=t/probA;
prob *= probA / areaFractionA;
yl = ymid;
fO1 = fOmid;
f11 =flmid;
}else { //TIS ONMAXY SIDE
t=(t — probA) /(1 — probA);
prob *= (1 — probA) / (1 — areaFractionA);
y0 = ymid;
f00 = fOmid;
f10 = f1mid;
}
}
}
// CONVERT S AND T TO GLOBAL COORDINATES
s = (s+x0) / sumTable.width;
t = (t+y0) / sumTable.height;
// CONVERT TO PROBABILITY OVER SOLID ANGLE
cosPhi = cos( PI * (0.5 — t) );
prob *= cosPhi / (2.0 * PI * PI);

Figure 5.14: Warping Algorithm (part 2). The warpSample2 warps (s,7) down to the pixel
level. After the warping is done, s and t are converted to the global coordinate system
of the environment map. prob is also converted from probability over the area of the
environment map to be in terms of solid angle, multiplying by cos¢ /2%, where ¢ is the
angle of inclination to point (s,7) in the environment map.
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Chapter 6

Towards Triple Product Sampling in Direct Lighting

A version of this chapter was published as:

David Cline, Kenric B. White and Parris K. Egbert. “Towards Triple Product Sampling in
Direct Lighting.” 2006 IEEE Symposium on Interactive Ray Tracing, Poster Compendium.
pages 11-12, 2006.

Abstract. State of the art sampling methods for direct lighting from environment maps
generate samples according to the product of the environment map and BRDF without
shadows. In this paper we describe techniques that augment existing product sampling
strategies to include an approximate shadow term with little additional overhead. We com-
pare these augmented techniques to a recently described product sampling method, two
stage importance sampling, showing substantial quality improvements in rendered shadow

regions.
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6.1 Introduction

Lighting from environment maps has become popular in recent years due to the high visual
quality of results that the technique can achieve. The main difficulty with environment
map lighting lies in the complexity of the lighting equation. Even a direct lighting solution

requires the evaluation of the direct lighting integral for each visible surface point:
Ly(x—) :/ Le(x— —@)f,(¥ o x —0)| cos O]V (x — —O)d®,
Q,

In the equation, the direct lighting from a surface point x in direction ¥, L;(x — W), is
the integral of three terms: the incident light from the environment map, L,(x« —®), the
BRDF term, f.(¥ < x <> ®)|cos 6], and the environment map visibility in direction ©,
V(x——-0).

Current state of the art importance sampling methods can generate samples accord-
ing to the product of the incident light and BRDF terms of the direct lighting equation.
Burke, Ghosh and Heidrich [2005] and Talbot, Cline and Egbert [2005] construct the prod-
uct distribution (or approximation) starting with samples drawn from a simpler distribution.
Most of these samples are then discarded, leaving samples that are distributed according to
the product of the BRDF and incident light. Other techniques achieve the product distribu-
tion by warping an initial set of uniform samples. Clarberg et al. [2005] guide the sample
warping with a wavelet product, and Cline et al. [2006] build a hierarchical partition of
the light source for each primary ray that directs the sample warping. Still other work by
Ghosh, Doucet and Heidrich [2006] uses sequential importance sampling to propagate the
product distribution through time in the presence of animated objects or lighting.

Unfortunately, none the above mentioned importance sampling methods includes
a visibility term in its resulting sample distribution. Visibility is determined after the ex-
pensive product sampling step by ray casting. The ideal importance sampling method for

direct lighting should generate samples according to the triple product of the incident light,
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BRDF and visibility rather than just the double product of the BRDF and incident light
terms. This paper presents two methods that accomplish this goal by augmenting existing
product sampling algorithms with either a pre- or post-processing step to account for the
visibility of the light source. Our algorithms are similar in spirit to the work by Ben-Artzi,
Ramamoorthi and Agrawala [2006], but we concentrate on direct sampling of environment

maps rather than sampling sets of approximating point lights.

6.2 Adding a Visibility Term to Product Sampling

This section describes two methods that augment existing importance sampling algorithms
to include a visibility term, either as a pre-process or a post-process. Both of the methods
rely on low resolution visibility maps to define the visibility importance term, but we will

show that even very coarse maps can appreciably reduce the error in penumbra regions.

6.2.1 Visibility in Preimage Space

Most of the product sampling algorithms mentioned in section 6.1 begin with a set of
uniformly-distributed points in [0,1)? which are transformed to the product distribution.
Ray samples are then created from the transformed points, and light source visibility is
tested for these rays. Conceptually, however, there is no reason why the shadow rays cannot
be replaced by a visibility map defined over [0, 1)2. We call this kind of a visibility map a
preimage visibility map because it is defined over the domain of input numbers rather than
the range of output directions. The benefit of defining a visibility map in this way is that
occluded points can be culled before they go through an expensive transformation. When
points that survive this preimage space visibility culling procedure are fed into a product
distribution sampler such as two stage importance sampling, the resulting samples will be
distributed according to the triple product of the visibility, BRDF, and environment map.

The combined procedure thus forms a triple product sampler for direct lighting.
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Discard points occluded Product
by preimage visibility map sampling

A

Uniform Preimage Triple
points visibility product

Figure 6.1: Triple product sampling based on preimage visibility maps. Uniform input
samples in [0, 1)? are generated (left), and samples within occluded regions of the random
number space are discarded (middle). The remaining samples are fed into an existing prod-
uct sampling algorithm. Samples in the high confidence region for visibility are assumed
to be visible, and samples from the uncertain region (hollow points) cast shadow rays to
test visibility.

In practice, of course, it is not feasible to produce an accurate visibility map for
each primary ray, but it is possible to create approximate visibility maps without too much
trouble. We will describe how to create these maps in section 6.2.3. For our purposes we
define three zones within a visibility map: (1) areas of high confidence for occlusion, (2)
areas of high confidence for visibility, and (3) uncertain areas. Our triple product sam-
pling algorithm proceeds as follows: First, we must determine how many uniform points in
[0,1)? to generate. To maintain consistent quality, one of our design goals is for each pixel
to have roughly the same number of visible samples, so the number of samples that we
create, m, is

m=n/v,

where n is the desired number of visible samples and v is the fraction of the visibility map
that is visible or uncertain. Once the points have been generated, we discard zone 1 points
immediately. The remaining points are then transformed to the product distribution. Fi-
nally, visibility is assumed for samples from zone 2, and shadow rays are cast to determine

visibility for zone 3 samples. Figure 6.1 shows the steps of the algorithm graphically.
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6.2.2 Visibility in World Space

A second variant of our algorithm relies on visibility maps defined in world space instead of
preimage space. The second algorithm works as a post-process to product sampling rather
than a preprocess. This has the consequence that occluded samples must be transformed
to the product distribution before culling, but the world space maps offer geometric coher-
ence that may not be present in the preimage maps. The algorithm proceeds as follows:
first, uniform points are sent through a product sampling algorithm as usual. The resulting
samples are then checked against a world space visibility map. Once again, samples in
the occluded regions of the map are discarded, samples within visible regions are assumed
to be visible, and samples within uncertain regions must cast shadow rays to determine
visibility. Because of the overhead of transforming samples to the product distribution be-
fore they are discarded, we use a fixed number of samples per pixel in this variant of the

algorithm. Figure 6.2 shows the second variant of the algorithm graphically.

Product Discard points occluded in
sampling  world space visibility image

Uniform Product Triple
points distribution product

Figure 6.2: Approximate triple product sampling based on world space visibility maps.
Uniform input samples (left) are transformed to the product distribution (middle). The
transformed samples are then checked against a world space visibility map. As with preim-
age visibility maps, samples in “occluded” map regions are discarded, samples in “visible”
regions are considered to be visible, and samples in “uncertain” regions (hollow points) test
visibility by casting shadow rays.
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6.2.3 Creating the Visibility Maps

This section describes how to create the visibility maps needed for our triple product sam-
plers. We create visibility maps at a sparse grid of locations over the image plane. The size
of the visibility maps is kept on the order of the pixel spacing between them so that the
total cost of the visibility maps is only a few rays per pixel. For example, a grid of 16 x 16
visibility maps with a spacing of 8 pixels can be computed using just 4 ray samples per
pixel. After the visibility maps are created, we mark pixels on the border between visible
and non-visible regions as uncertain.

Figure 6.3 shows a simple scene along with its preimage and world space visibility
maps. Note that the world space maps essentially form an ambient occlusion field of the
scene, whereas the preimage maps include BRDF and lighting effects, more accurately
reflecting the amount of shadowing present in the rendering.

To obtain a visibility map for a particular pixel location, we combine the four closest
maps in the grid of maps. Texels that agree between all four neighbor maps are copied to

the new map, and all other texels are set to “uncertain”.

o ——

PR L bbb
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3
:
33

344

©)

Figure 6.3: (a) An example scene with (b) the preimage visibility maps and (c) the world
space visibility maps generated for it.
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6.3 Unbiased Rendering

The triple product sampling algorithms described in the previous section are biased unless
the visibility maps are completely accurate, which is almost never the case in practice.
This section describes an unbiased version of our triple product sampler based on preimage
visibility maps. An unbiased algorithm based on world space maps is also possible, but less
useful because samples cannot be culled before they are fed through the expensive product
distribution sampler.

Observe that the algorithms in section 6.2 are biased precisely because the visibility
maps are not accurate. Thus, an unbiased algorithm can use the visibility maps as a guide,
but not for final visibility queries. Additionally, an unbiased algorithm cannot discard all
of the samples in the “occluded” regions of the visibility map, since they may not actually
be occluded. Based on these observations, our unbiased triple product algorithm works by
moving some fraction of the samples from the occluded regions of the visibility maps to the
visible and uncertain regions. Typically we reallocate 50% of the samples from occluded
regions, since reallocating more would lead to very bright samples in locations wrongly

guessed as occluded by the visibility map. Note, however, that these gleaned samples

Russian roulette on points
in occluded regions

Uniform
points

l

Product
sampling

—

)

Preimage
visibility

#::.':.

Approximate
triple product

Figure 6.4: Unbiased triple product sampling based on preimage visibility maps. Uniform
points (left) are generated, and Russian roulette is used to discard some of the points in oc-
cluded regions, leaving a higher density of samples in visible and uncertain areas (middle).
The remaining points undergo product sampling, resulting in a distribution that is closer to
the triple product than the double product alone.
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can greatly increase the sample density in visible regions depending on the percentage of
the map that is deemed uncertain or visible. Finally, to make the algorithm unbiased, we
must cast rays to determine visibility. Figure 6.4 shows our unbiased algorithm based on

preimage visibility maps.

Generating samples. Our unbiased triple product sampler accomplishes the sample re-
allocation by generating enough uniform points in [0, 1) to account for the samples that
will be needed in visible regions, thinning out samples in occluded regions of the map by
Russian roulette. The number of uniform points that the algorithm must generate, m, is
given by

v+(l—=v)(1—a)

m=n ,
v

where n is the desired number of final samples per pixel, v is the fraction of the environment
map that is uncertain or visible, and a is the relative density of points in occluded regions
compared to standard sampling. The probability of keeping points in occluded regions of

the visibilty map, p, then becomes

v+ (1—-v)(1—a)

p:

Correcting the visibility maps. During the course of rendering, a ray cast into an “oc-
cluded” region of the visibilitiy map may actually find the light source to be visible. When
this happens, the algorithm corrects the error by setting the corresponding entry and its

immediate neighbors in the four visibility maps nearest the current pixel to “uncertain”.
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6.4 Results

We have implemented our triple product samplers as an extension to PBRT
[Pharr and Humphreys, 2004], using two stage importance sampling [Cline et al., 2006]
as the product sampler. This section compares standard two stage importance sampling

to our augmented triple product samplers.

Light shining through a small hole. The scene in figure 6.7 consists of a bunny enclosed
in a box with a small hole in the top to let light through. Most of the light from the
environment map (grace cathedral) is blocked, so that the product distribution does not form
a good importance function for the scene. The graphs to the left of the image plot image
quality for our biased and unbiased triple product algorithms along with standard two stage
importance sampling for comparison. Note that in both cases the preimage visibility maps
outperform the world space maps.

For the bunny scene, our unbiased algorithm based on preimage visibility maps out-
performs two stage importance sampling alone by about two times as measured by RMSE,
but the quality difference in low light regions is actually much more dramatic. The images

in figure 6.5 demonstrate this. The images have been tone mapped to bring out detail in

(@) (b) ©
Figure 6.5: Insets of the bunny scene tone mapped to bring out details in dark regions of
the image. (a) Two stage importance sampling, (b) biased triple product sampling and (c)
unbiased triple product sampling.
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dark regions. Two stage importance sampling (a) maintains high quality in bright regions
near the bunny, but the dark parts of the image are extremely noisy. The biased version of
our triple product sampler (b) is smoother everywhere, but some of the dark areas in the
image are completely black because of errors in the visibility maps. Finally, the unbiased
version of our algorithm (c) is smooth almost everywhere, except for a few pixels in the
darkest regions. These bright pixels correspond to samples that were erroneously marked as
occluded in the visibility maps. If some slight bias can be tolerated, the bright spots could
be eliminated by using the same probability for these samples that is used for unoccluded

ones in the Monte Carlo Integration formula.

Sponza atrium scene. Figure 6.8 shows results for a second test case of our technique,
the Sponza atrium, once again in the Grace cathedral environment. For this test, we used
the unbiased triple product sampler based on preimage visibility maps. We tested this scene
with and without bump maps. In the first test, we compared two stage importance sampling
to our triple product sampler without using bump maps in the scene. As with the bunny ex-
ample, the render quality improved somewhat overall, but much more in low light areas. In
a second test, we added bump maps to the scene. Since the bump maps drastically changed
the orientation of scene normals, the modified scene violated the assumption that preimage
space coordinates correlate to similar world space directions within pixel neighborhoods.
Consequently, the triple product sampler essentially reverted to standard product sampling,
and quality remained approximately the same as two stage importance sampling. Figure 6.6
shows close-ups of the sponza scene rendered using the same number of samples with two

stage importance sampling, and triple product sampling without and with bump maps.

Lazy evaluation of the visibility maps. With the unbiased algorithms it is possible to
evaluate the visibility maps lazily rather than as a preprocess, avoiding the startup cost
needed for the visibility maps. To do this, we initialize all of the maps to “occluded”, and

update the maps as described in section 6.3 for all visible samples instead of just visible
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(a) (b) ()

Figure 6.6: Close-ups of the lower left hand corner of the sponza scene showing light
coming through the colonade. (a) Two stage importance sampling is quite noisy in low
light regions. (b) Unbiased triple product sampling produces a much smoother result, but
adding bump maps to the scene (c) destroys the assumption of correlation between preim-
age space points and world space directions, reducing the quality. Note, however, that the
triple product sampler does not fail terribly in this case. Instead, its performance degrades
gracefully to approximately that of two stage importance sampling.

samples from occluded regions. We implemented this technique, and found that quality
remained about the same for similar render time (time gained by avoiding preprocessing
was approximately offset by a corresponding reduction in image quality). However, one
unexpected result was that almost all of the bright speckles from visibility errors were
missing. We believe that this is the consequence of updating the maps for each visible

sample.

6.5 Conclusion

This paper introduced several triple product samplers for direct lighting that augment ex-
isting product sampling methods with an approximate visibility term. We presented the
idea of preimage space visibility maps, which operate in the space of input numbers rather
than world space, allowing occluded samples to be culled without the need to transform
them into world space. Finally, we compared our triple product samplers to an existing
product distribution sampler (two stage importance sampling), and demonstrated quality

improvements in shadowed regions, both in terms of objective error and visual quality.
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Figure 6.7: In the scene above, the bunny is enclosed in a box that has a small hole in the
top to let light through. The left graph plots image error against render time for standard two
stage importance sampling vs. the biased variants of our triple product samplers. “World
Space” uses world space visibility maps and ‘“Preimage Space” uses preimage visibility
maps. The graph to the right compares our unbiased triple product samplers to two stage
importance sampling.
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Sponza Atrium
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Figure 6.8: The Sponza atrium scene in the Grace cathedral environment. The left graph
plots error against render time for two stage importance sampling and the unbiased version
of our preimage space algorithm when bump maps are not used in the scene. Without
bump maps, a good quality improvement is achieved. When bump maps are added to the
scene (right graph), the assumption of correlation between preimage space coordinates and
world space directions is broken. In this case, the algorithm receives little benefit from
the visibility maps, and essentially reverts to product sampling. Even when this happens,
however, the triple product sampler does no worse than the product sampler by itself.
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Part 111

Sampling Methods for Global

Illumination
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Chapter 7

Ray Based Global Illumination Methods

Much of the content in this chapter was adapted from the technical report:

David Cline and Parris K. Egbert. A Practical Introduction to Metropolis Light Transport.

Technical Report, Brigham Young University, 2005.

7.1 Introduction

This chapter is intended as a primer for ray based global illumination as well as a survey
of previous work in the area. Several of the algorithms covered will be presented in tu-
torial form, with an eye on bringing the reader up to speed with the issues related to the
original research that will be presented in chapters 8 and 9. This chapter will not cover
view-independent or finite element techniques such as traditional radiosity or precomputed

radiance transfer.

The goal. The goal of global illumination is a physically accurate simulation of the light
transport leading to a photograph. In other words, given a scene description and the emis-
sion characteristics of light sources, global illumination seeks to snap a “synthetic photo-
graph”, following light paths through the scene, and recording the intensity of light striking
a virtual film plane.

In practice, global illumination renderers must simplify the physics of light trans-

port somewhat to make computations practical. The particle model of light is assumed, so
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wave effects like diffraction and interference cannot be simulated. In addition, all visible
wavelengths are often conglomerated into just three, red, green and blue. Other simplific-
tions include the assumptions that the speed of light is infinite and that all light is randomly
polarized, as well as the assumptions that time delay of photon re-emission (phosphores-
cence) and frequency change during light scattering (flourescence) do not occur. Despite
these compromises, global illumination can produce images that are visually difficult to

distinguish from photographs and predictive of real world illumination.

An example scene. Throughout this chapter we will use the “three spheres” example
scene shown in figure 7.1 to demonstrate the kinds of results achieved by different rendering
algorithms. The scene contains diffuse, specular and transparent surfaces, and is designed

to highlight artifacts that are typical of the different rendering algorithms.

Figure 7.1: “Three spheres” example scene. The left sphere is a mirror ball, the middle
sphere is diffuse and the right sphere is made of glass. Inside the right sphere are two
smaller, diffuse spheres. The rendering above was not made using global illumination, so
global effects such as correct shadows, reflection, refraction and indirect lighting are not
present.

7.2 An Excursion: Brute Force Global Illumination

Since global illumination is a physical simulation of light transport, perhaps the simplest
and most obvious global illumination algorithm is the direct simulation of individual pho-

tonssThe.idea behind. this.scheme is to generate all photons that are emitted from the
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Brute Force Global Illumination

Clear the image.
For i = 1 to the number of photons emitted while the camera shutter is open
Create a photon.
Pick a wavelength, emission point and initial direction for the photon.
While the photon is not absorbed
Find the intersection of the photon with the closest surface.
If the intersection lies on the camera lens
Project the photon through the lens onto the image plane.
Increment the photon counter for the resulting pixel.
Absorb the photon.
Else
Determine whether to absorb the photon based on the surface reflectance (BSDF).
If the photon was not absorbed
Determine a new direction for the photon using the surface reflectance.

Figure 7.2: Brute force global illumination algorithm by direct simulation of photons.

light sources while the camera shutter is open, and follow their trajectories until they either
strike the camera lens or are absorbed by the environment. Photons that do hit the lens
are projected onto a virtual image plane, contributing to the resulting image. The appeal
of this method is its simplicity. The connection to the physical world is obvious, and all
mathematical concerns reduce to ray casting and the simulation of light scattering events.
Figure 7.2 gives pseudocode for global illumination by direct photon simulation.

Despite being simple and theoretically complete, direct simulation of photons for
global illumination is impractical because of the large number of photons involved. A
simple back of the envelope calculation will verify this fact. Consider the number of visible
light photons emitted by a 100 watt light bulb in a typical camera exposure of 1/60"" of a
second. A watt is a Joule per second, so the light bulb uses 100 Joules of energy per second.
An incandescent bulb is only about 10% efficient, however, so the amount of visible light

emitted by a 100 watt bulb in a sixtieth of a second exposure is roughly:

Joules power input < 01 visible .light < 00167 seconds _ 0'16710ules visible light‘
second power input exposure exposure

100
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Now we need to determine how many visible photons are needed to make up 0.167 Joules
of energy. Planck determined that the energy of a photon is equal to its frequency times
Planck’s constant. Planck’s constant is 6.262 x 1073* Joule seconds, and a typical photon
in the middle of the visible spectrum has a frequency of v = 6 x 10'*/second, so a single

visible photon contains about

6x 1014

= 3.76 x 10" Joules
second

6.262 x 10 3*Joule seconds x

of energy, and the hypothetical 100 watt light bulb emits

0.0167 Joules

— 4.44 x 10"
3.76 x 1019 Joules %

photons per exposure. A typical modern PC can simulate on the order of a few billion
photons per day, so a single 100 watt light bulb emits roughly a hundred million times
more photons during a single shutter click than can be simulated on a PC in a 24 hour
period.

Of course, the same image can be achieved on average by simulating fewer photons

with higher energy. Figure 7.3 shows an image produced by simulating 1 billion photons

Figure 7.3: Brute force global illumination by direct simulation of photons.
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in the three spheres example scene. Note the extremely shallow depth of field. This is
a consequence of the large lens aperature needed to “catch” enough photons to make a
coherent image. Even with the large lens size, less than half a percent of the photons hit the
lens, and fewer still project to the within the bounds of the image. Besides the narrow depth
of field, the image suffers from a large amount of color noise that results from simulating
different wavelengths separately. This is consistent with the kinds of artifacts seen in real
photographs taken under very low light conditions. On the plus side, however, all of the
major global illumination effects are trivially achieved, and the image displays constant
quality throughout, although at least a hundred times as many samples would likely be

needed to produce an artifact free image.

7.3 Mathematical Framework for Global Illumination

7.3.1 What does Global Illumination Measure?

Because of the computational expense of simulating individual photons, almost all global
illumination algorithms treat light as a continuous energy flow rather than a set of discrete
photons. In this setting, the task of global illumination becomes to calculate the flow rate
of light energy through each pixel on the virtual image plane. The specific radiometric
quantity that is measured is called radiance, which is defined formally as the flow of light
energy per unit time per unit projected area per unit solid angle. Intuitively, radiance can be
thought of as the amount of light energy arriving at a particular point from a given direction
per unit time. Most rendering texts include extensive derivations of radiance and other
radiometric quantities related to global illumination (e.g. [Jensen, 2001; Dutré er al., 2003;
Pharr and Humphreys, 2004]). Luckily, however, we can ignore these issues for the most
part—the emission characteristics of the light sources are specified in units of radiance, and

these units propagate through most global illumination algorithms unchanged.
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The conservation of radiance. An important property of radiance is that it remains con-
stant along lines of sight through empty space. This fact may seem counter-intuitive at
first, since, for example, the amount of light reaching a point from the sun varies as the
inverse square of the distance. However, the reduction in incoming light is actually due
to a reduction in the solid angle that the sun covers in the sky rather than a change in the
radiance (the sun looks just as bright, but smaller as you move away from it). The upshot
of this “conservation of radiance” along sight lines is that global illumination algorithms
only need to calculate the radiance at surface points visible to the camera, rather than at all

points in space.

7.3.2 The Rendering Equation

The equation that describes the radiance leaving a surface point in a particular direction is
called the “rendering equation”. Simultaneously introduced to the graphics community by
[Kajiya] and [Immel ef al.] in 1986, the rendering equation relates the total radiance leaving
a point to the emission characteristics of the point, the incident radiance at the point, and
the reflectance properties of the surface, called the BSDF. Equation 7.1 gives one common

form of the rendering equation:

v e

Lix—W) :Le(x—>‘P)—|—/SL(X<——®)fs(‘P<—>x<—>®> cosBd®. (7.1
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Note the similarity between equation 7.1 and the direct lighting equation defined in chap-

ter 4. The terms of the rendering equation are defined similarly as well:

X A point on a surface.

v The direction for which we want to compute the radiance.

ny The surface normal at point x.

Sy The sphere of directions surrounding point x.

Q] A direction vector in S,.

0 The angle between ® and n,.

L(x—Y¥) The radiance that leaves point x in direction V.

L,(x—¥) The radiance emitted from point x in direction V.

L(x——0) The incoming radiance that strikes point x from direction —®.

fs(¥ < x«—0®) The BSDF function which defines the light scattering

properties of the surface at point x.

The most obvious difference between the rendering equation and the direct lighting equa-
tion is the use of the BSDF, f;, rather than the BRDF, f,. The BSDF, or bidirectional
scattering distribution function, is a generalization of the BRDF that allows light scattering
to occur by transmission as well as reflection. By using the BSDF, the rendering equation
can account for transparent surfaces as well as opaque ones, but it requires the integration
domain to be defined over the whole sphere around point x rather than just the hemisphere

above it.

A more subtle, but problematic difference is that in the rendering equation the emit-
ted radiance arriving at point x, L, (x < —®), is replaced by the total radiance, L(x«— —0).
Consequently, L appears on both sides of the equation. Interpreted literally, the presence

of L on both sides means that to determine the radiance leaving point x in a particular di-
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rection, one must know the radiance arriving at x from all directions. These radiances, in
turn, must be calculated, and so on, leading to an infinite regression of evaluations. Math-
ematically, this infinite regression is equivalent to a Neumann expansion of the rendering
equation, which successively replaces L on the right hand side with what it is equal to,

yielding an infinite series of terms, one for each bounce:

Lx—Y) =L, (x—Y)

+ /Le(x<——®) fs(¥P—x—0)|cosO| dO®
Sy

+ / Lo(X ——0) fi(—Ox' @) cos 0'dO f,(¥sxs®)|cos 0]dO
Sy JS,

+ / / Le(X”<——®N)
Sx IS IS

The first two terms of the Neumann expansion describe the radiance resulting from zero or
one bounces from point x, or in other words, the direct lighting. The third term accounts
for light that has bounced twice, and so on. Despite the fact that the Neumann expansion
has an infinite number of terms, in practice only the first few are significant. The total
light power diminishes with each reflection, and becomes insignificant after a few bounces,
although the exact number of bounces that are significant depends on the scene and desired

accuracy of the simulation.
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7.3.3 Pixel Integrals and the Measurement Equation

Before delving into specific global illumination algorithms, we will formalize an idea that
has been hinted at throughout the dissertation—namely, that pixel values in global illumi-
nation images are actually high dimensional integrals. To put it in more concrete terms, a
pixel value in a global illumination image records the output of an idealized light sensor
placed somewhere in the scene. The response of the pixel sensor varies over its surface
and with respect to incoming direction, resulting in an integral called the measurement

equation, which can be written as follows:
M;= / / We(x0— @) L(xg+— —0) dO dxy, (7.2)
AJS,,

where M; is the output of the sensor, A is the area of the sensor, S,, is the sphere of
directions, and W, (xo — @), called the importance or weight emitted, is the sensor response
at position xy in direction ®. W, is usually normalized so that its integral is equal to one.
That way, M; becomes a weighted average of the radiance striking the sensor. M; can also
be integrated over time to capture time varying effects such as motion blur and lighting

changes during a camera exposure.

The W, term for a pinhole camera. Here we derive the W, term for a pixel in a standard
pinhole camera. As previously stated, we proceed from the assumption that W, should
integrate to 1 over the sensor domain. Since the sensor location is a single point, we can
ignore the sensor area! and just worry about the angular extent sampled by the pixel. We
will also assume a box filter, so that W, will be constant over the pixel’s area. Under these

assumptions, the importance for a point x; in pixel P should be 1/, where « is the solid

! The sensor response at the eye point is actually infinite (a delta function), but we can ignore this fact
since the infinite value will cancel out when integrated over the zero surface area of the eye point.
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angle subtended by the pixel. We can determine & by calculating the area of the pixel and
then converting the area to solid angle. The figure below shows the geometric setup for the

conversion:

Assuming that the image plane is located one unit away from the eye point, the area of
pixel P, A,, is given by:
4 eh ev

Ap= o tan? tanE,

where w and h are the width and height of the image in pixels, and 6, and 6, are the
horizontal and vertical field of view angles of the camera. Based on equation 4.6, we
derive the formula ot = A, cos ¢ / d?, where, once again, « is the resulting solid angle, and
other variables are as in the above figure. Applying this formula to W, yields

1 d?

We(xo—x1) = o A cos¢’
p

Making two other substitutions: d = 1/cos 0, and ¢ = 6 gives us the final value:

a1 wh
Apcosd  A,cosP0 4 tan% tan% cos36’

We(xo—x1) = (7.3)

The W, term for a thin lens camera. The W, term for a thin lens camera can be derived
similar to the pinhole case. For this case, it is easiest to think of the lens itself as being the

light sensor, with each pixel being sensitive to different incoming directions. We assume
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that each part of the lens is equally light sensitive, so that one of the terms that make up W,

will be 1/A;e,s, where Ajps = nrlzem is the lens area. This is shown in the figure below:

lens

Following the same derivation for the direction term as in the pinhole case yields the im-

portance for a point xp on the lens through point x| on the focus plane:

wh

4 Ajons tan% tan% cos30

We(xo—x1) = (7.4)

7.4 Path Tracing

Path tracing [Kajiya, 1986] was the first ray based global illumination algorithm published
in the graphics literature, and it is a direct application of Monte Carlo integration to the
measurement equation. A path tracer samples the incoming radiance on a pixel by means
of light paths. By light path, we mean a ray path that connects a light source to the eye

point through a number of scattering events (reflections or transmissions).

7.4.1 Sampling Light Paths in a Path Tracer

A path tracer generates light paths by casting rays from the eye point into the scene. These
eye subpaths (also called lens subpaths) are then allowed to bounce around in the scene
according to some probability distibution (PDF). The path tracer can make a completed

light path from an eye subpath in one of two ways. First, an eye subpath may just happen
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Figure 7.4: Explicit and implicit light paths in a typical path tracer. Explicit light paths
(left) are used for direct lighting situations, while implicit light paths (middle) are able to
sample caustics and reflections of light sources more efficiently. The final image (right)
combines samples from both path types.

to hit a light source. We call this kind of light path an implicit light path. A second kind of
light path is created by connecting the end of an eye subpath directly to a point on a light
source. We call these explicit light paths. (See figures 7.5 and 7.6.) Although a theoretically
complete path tracer can be made using just implicit or just explicit light paths, typical path
tracers leverage the strengths of both these path types. For example, explicit light paths
are often used to compute direct lighting, whereas implicit light paths are more suited to
computing caustics and reflections of light sources. Figure 7.4 demonstrates the roles of
implicit and explicit light paths in a typical path tracer.

Rather than explicitly dealing with the W, term of the measurement equation, most
path tracers simply average the radiance estimates from a number of light paths for each
pixel. This works because the light paths are created starting at the camera, which allows
the renderer to choose initial sampling directions proportionally to the W, term. Later, we
will see that the W, term must be considered for algorithms such as light tracing that grow

light paths from the light sources.
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7.4.2 Evaluating Light Paths

When a path tracer evaluates a light path, what is actually being computed is a Monte Carlo
estimate of the radiance flowing to the eye point along the first leg of the path, L(x; — xg).
This estimate, which we will denote Z(xl — Xp), must stand as a proxy for the contributions
of all light sources and possible scattering events, even though only one light source and
one set of scattering events has been sampled. To put it in statistical terms, the expected

value of a light path must be equal to the radiance along the first leg of the path:

E[L(x; —x0)] = L(x;—x).

A path tracer achieves this feat by cleverly combining the light scattering properties of
surfaces in the scene (BSDFs) and the sampling distributions used to choose directions in
path space (PDFs). To illustrate how this is done, we give examples for both implicit and

explicit light paths.

7.4.3 Evaluating Implicit Light Paths

A path tracer evaluates an implicit light path by multiplying the radiance of the light source
(L.) by the product of the BSDF terms (f;cos0) evaluated at the interior vertices of the
path, and dividing by the probability with respect to solid angle (pangie) that the ray direc-
tions in the path were chosen by the sampling procedure. To obtain a proper estimate, L
must also be divided by the probability that the sampling procedure chose to create a path

of the given length, pjenen (section 7.4.5 describes how to calculate pjepg). Figure 7.5

shows the evaluation of an example implicit light path.

Choosing sampling distributions that cancel with the BSDF term. Often, it is possible
to choose a sampling distribution such that p,g . cancels out the non-constant parts of the

BSDF term, f;cos 8. This is nothing more than importance sampling the BSDF function,
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Js(xg e x; < x3)
Pangle (xg & x; ©X3)

Z(XI — X)

4

Ss(x1 & x2 © x3)
Pangle (X7 © X2 > x3)

~ _ [s(x0 > x1 <> x2) cos 0 " fs(x1 > x> x3) cos 6y 9 Le(x3—x7)

L(x1 —>XO) =
Pangle (X() X x2) Pangle (xl X2 X3) Plength

Figure 7.5: An implicit light path is created when the sampling procedure is lucky enough
to hit a light source. The term pje,¢, is the probability that the sampling procedure chose
to create a path of the given length. This term is needed because L(x; — x¢) describes all
the light flowing to the eye point along x; — xo through any number of scattering events.
Since the light path only samples one set of scattering events, its value must be “pumped
up” by dividing by pjengr-

which we have already seen in the context of direct lighting in chapter 4. As a concrete
example of how the sampling works, consider the case of an ideal diffuse surface. The value
of f; for an ideal diffuse surface is p /7, where p is the surface reflectance (percentage of
incoming light reflected from the surface). If sampling directions are chosen according to a
cosine-weighted distribution about the surface normal, then the value of pypgj. is cos 6 /T,

and the ratio (f;cos 6/paugele) becomes:

(p/m)cos®
cosO/m

Cancelling can occur for an ideal specular surface (mirror) as well. In the ideal specular
case, f; is a delta function centered on the reflected direction divided by a cosine term:

fs = p Or/cos 6, and the only sampling distribution that makes sense is another delta func-
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tion centered on the reflected direction: pyue. = Og. The delta functions cancel out in the

ratio, once again leaving the surface reflectance:

(p 8r/cos0) cosO
5 -
R

7.4.4 Evaluating Explicit Light Paths

In an explicit light path, the renderer connects the eye subpath directly to a point on a light
source that the sampler has chosen probabilistically with respect to area, rather than solid
angle. Consequently, the path evaluation must convert probability with respect to area,
Darea» t0 probability with respect to angle, and account for the visibility of the chosen point
from the last node in the eye subpath. Applying equation 4.6 to perform the conversion, we
evaluate explicit light paths as shown in the example in figure 7.6.

An intuitive way to think about explicit light paths is to imagine that the light source
has been probabilistically concentrated into a single point. This interpretation is particu-
larly appealing when one considers points chosen uniformly with respect to area on the
light source. When points are chosen uniformly, p,.., becomes 1/A, where A is the area of
the light source, so dividing by the probability actually multiplies by the area, “squeezing”

all of the radiance of the light source into a single point.

7.4.5 Light Paths in a Working Path Tracer

Terminating eye subpaths. A practical issue that comes up in a path tracer is how to
terminate eye subpaths. Light can bounce infinitely, but the computer can only simulate
a finite number of bounces. One idea is to cap eye subpaths at some maximum length.
This works fairly well in practice, but it introduces bias into the solution because light that
bounces more than the maximum number of times is never counted. A second solution that

gets rid of the bias is to use Russian roulette to terminate eye subpaths. Russian roulette
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Js(x7 0 x5 o x3)
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Figure 7.6: An explicit light path is created by connecting the end of an eye subpath
directly to a point on a light source. The term V(x; <-x3) is the visibility between points x;
and x3, d is the distance between x, and x3, and @3 is the angle between the surface normal
at x3 and the direction x3 — x,. Note that p,.., must account for all of the light sources in
the scene.

works by defining a probability of terminating the eye subpath at each bounce. In this case,
Plength becomes the product of the Russian roulette probabilities for all bounces in the path.
If the bounce directions are sampled according to the BSDF of the surface, Russian roulette
can cancel out the surface reflectance term that results from the sampling by choosing the

reflectance (p) as the probability of extending the path at each bounce.

Creating multiple paths from a single eye subpath. For efficiency reasons a path tracer
usually makes multiple light paths from a single eye subpath. At each intersection point
in the path, the sampling procedure decides whether the eye subpath will be considered
an implicit light path, and whether explicit light paths should be created by connecting to
light sources. A group of light paths created in this way serves as a better estimate of the

radiance than a single light path could.
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Multiple importance sampling of different light path types. Explicit and implicit light
path types can be combined by multiple importance sampling. To do this, the path tracer
treats the connection of the path to the light source as a direct lighting situation and evalu-
ates pangle as described in section 4.4.3. Combining the path types through multiple impor-
tance sampling has two benefits, it improves the PDFs used to evalute the light paths and
simplifies the main loop of the path tracer, since implicit and explicit paths do not need to

be treated as distinct entities.

7.4.6 Typical Path Tracing Results

Figure 7.7 shows the three spheres scene path traced with 64 samples per pixel. While this
image is much better than the brute force image shown in figure 7.3, there are still a number
of artifacts. The most obvious issue is the bright speckles that appear throughout the image.
These speckles are caused by the infrequent inclusion of very bright radiance estimates that
occur when the amount of light flowing along a path is large, but the probability that the
sampler creates the path is small. This can occur, for example, when the light path reflects
or refracts from a specular surface and directly hits a light source. Since the sampler does
not know which directions will reflect to the light sources, it cannot sample them with a

high probability, leading to variance.

Figure 7.7: Path tracing.
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7.5 Irradiance and Radiance Caching

From the outset it was clear that standard path tracing was too time consuming to be prac-
tical. A single rendering can require thousands of samples per pixel and days of CPU time
to produce a noise free image. For this reason, a lot of research has focused on speeding up
global illumination through caching and interpolation schemes. Ward’s Irradiance caching
algorithm [Ward et al., 1988] was one of the earliest and most successful algorithms of this
type.

As a motivation for his irradiance caching algorithm, Ward noted that most of the
visible noise in path traced images stems from indirect lighting on diffuse surfaces, even
though the true indirect lighting usually varies smoothly. Compared to the indirect lighting,
the amount of visible noise in specular reflections and direct lighting is relatively small.
Based on this observation, Ward factored the rendering equation into two pieces, with
one term for direct lighting and specular reflection and a second term for indirect diffuse
lighting. At render time, the specular reflection/direct lighting term is evaluated normally.
The indirect diffuse term, on the other hand, is calculated using a large number of ray
samples to reduce variance, but it is only evaluated at a few points in space and interpolated

to save time.

7.5.1 Irradiance and Radiance

Instead of storing all of the ray samples used to calculate the indirect difuse term, irradiance
caching takes advantage of a property of ideal diffuse surfaces that allows the total incident
light on the surface (irradiance) to be cached rather than the angular distribution of incident
light (radiance). To see how this works, let’s look at the definition of irradiance. Irradiance,
normally written as E, is defined as the total radiant flux arriving on a surface per unit area,

and it can be written as an integral of the radiance over the hemisphere:

E(x) :/ L(x<—®) cosb dO, (7.5)

X
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where once again, x is the point for which we want to determine the irradiance and €, is the
hemisphere above x. Assuming an opaque surface, the outgoing radiance from x is also an
integral defined over the hemisphere: L(x—¥) = [, f,(¥ > x < ©@)L(x+®)cos6d®. Fora
diffuse surface, however, the BRDF term is the constant % so it can be factored out of the
integral, leaving the BRDF times the irradiance: L(x—¥) = 2E(x). Thus, the irradiance

provides enough information to calculate the outgoing radiance for a diffuse surface.

7.5.2 Computing and Reusing Irradiance Samples

At render time, the irradiance caching algorithm creates irradiance samples as-needed, and
stores them in an octree data structure for easy spatial lookup. Before shading a point,
the renderer searches for nearby irradiance samples in the octree. It then determines if
the samples are suitable for interpolation based on a heuristic called “irradiance gradi-
ents” [Ward and Heckbert, 1992], which includes terms for scene geometry, surface normal
and the distance from the point being shaded to the cached sample. If one or more suit-
able irradiance samples are found, the irradiance at the point being shaded is approximated
with a weighted average of the existing samples. Otherwise, the algorithm computes a new

irradiance sample at the point, uses it to shade the point, and stores it in the octree.

7.5.3 Limitations of Irradiance Caching

Irradiance caching can work well for scenes with mostly diffuse surfaces, but it breaks
down in some situations because irradiance gradients do not account for abrupt changes
in incoming light. For example, figure 7.8 demonstrates the results of applying irradiance
caching to the three spheres test scene. The indirect diffuse lighting is smooth in most
places due to the interpolation, but there are some obvious artifacts. First, because the
algorithm evaluates the irradiance samples lazily, there are some shading discontinuities

that appear when new samples are added to the cache. Another problem is the caustic
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Figure 7.8: Irradiance caching.

lighting below the glass ball. Since the irradiance gradients heuristic does not account for
specular interactions, the algorithm undersamples the caustic region, missing the right half

of the caustic entirely.

7.5.4 Radiance Caching

As originally defined, irradiance caching could only render diffuse surfaces. Radiance
caching, on the other hand, retains some directional information to allow for glossy sur-
faces. Tabellion and Lamorlette [2004] agregate the radiance into three incoming direc-
tions, one for red, green and blue, whereas Kfivanek ef al. [2006] take a more rigorous
approach, storing the incoming radiance as spherical harmonics. In both cases, rendering
proceeds in the same manner as irradiance caching; radiance values are evaluated as needed

and interpolated whenever possible.
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7.6 Light Tracing

So far we have only discussed algorithms that solve the rendering equation starting at the
eye point. Along with these methods, there are a number of algorithms that estimate light
transport by shooting out packets of energy called “particles” from the light sources. Parti-
cles are similar in many ways to photons, but usually a particle encapsulates a large number

of photons that are treated as a unit for simulation purposes.

The most straightforward of the particle tracing methods is called Light tracing
[Dutré and Willems, 1994]. In a light tracer, light paths are created by following the tra-
jectories of particles from the light sources through the scene. In this sense, light tracing is
very similar to the brute force global illumination algorithm presented earlier in the chap-
ter, except that light tracing attempts to sample light flows rather than directly simulate

photons.

7.6.1 Light Paths in Light Tracing

To make a light path, a light tracer emits a particle from a light source, choosing an emission
point on a light source and an initial direction. The particle is then allowed to bounce
a number of times in the scene, creating a ray path called the light subpath. After each
bounce, a light tracer completes a light path by connecting the growing subpath to a point

on the camera lens (or the eye point for a pinhole camera).

7.6.2 Projecting Points onto the Image Plane

When a point in the scene is connected directly to the camera lens or eye point to produce
a light path, the renderer must determine which image pixel the light path contributes to.

In other words, for a point in world space P = [ x y z 1 |7, the renderer must find its pixel
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coordinates in screen space. If the camera uses a pinhole model, P can be projected directly

onto the image plane with the following projection matrix:

Tan(6,72) 0 ~w/2 0 we u, u, O 100 —c

M= 0 a7y M2 0 ve v v, O 010 —¢
0 0 1 0 —n, —ny —n; 0O 00 1 —c

0 0 -1 0 0 0 0 1 00 0 1

where

C=lcxeycy 1]7 is the camera’s center of projection (eye point),

N = [ny ny n;]" is the direction that the camera is looking,

U = [uy uy u )7 is the horizontal axis of the camera,

V=[v v v,]T is the vertical axis or “view up” vector of the camera,
6, and 0, are the horizontal and vertical field of view angles, and

w and h are the width and height of the image in pixels.

If the camera uses a lens model, the projected pixel location of point P also depends on
the point on the lens though which the light passes. To find the pixel coordinates in the
presence of a lens model, therefore, we must first choose a point Q on the surface of the
lens. We can then solve for the intersection of the ray Q — P on the plane of perfect focus

and project the resulting point, Py, onto the image plane using matrix M.

7.6.3 Evaluating Light Paths in Light Tracing

To evaluate a light path, a light tracer must both determine the amount of light flowing along
the path and convert the sampling rate in world space to a corresponding rate in image space
using the importance term, W,. Figure 7.9 gives an example of this calculation. Note that in

light tracing, samples may contribute to any image pixel, so L should be divided by the total
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number of particles that are traced from the light sources rather than the number of samples
“per pixel”. To account for this effect, we divide W, by the number of image pixels (wh) in
figure 7.9. Figure 7.10 shows a typical edge darkening artifact that results from failing to

convert the sampling rate from world to screen space.
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Figure 7.9: A light path created by connecting a light subpath directly to the eye point.

Figure 7.10: The importance term in light tracing. Failing to multiply by W, (left) results
in darkening away from the center of the image. Multiplying by W, (right) compensates for
lower sampling density near the image edges.
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7.6.4 Benefits and Drawbacks of Starting at the Light Sources

There are several benefits to sampling from the light sources instead of the eye point. First,
starting at the lights has the aesthetic appeal of following light in the direction that it travels.
Additionally, some parts of path space are better sampled. For example, consider the light
traced image of the three spheres scene in figure 7.11. The caustic below the right ball is
much smoother than in the path tracing case. Most of the image has worse quality than
path tracing, however. Furthermore, the reflections and refractions from the mirror and
glass balls are missing entirely. This is a consequence of connecting the light subpaths
directly to the eye point. Since the materials of these spheres are specular, the probability
that the specular directions will be sampled by connecting to the eye point is zero. (The

dark gray tint comes from a small diffuse term.)

Figure 7.11: Light tracing.

7.7 Photon Mapping

Photon mapping [Jensen, 1996; Jensen, 2001] is probably the most successful global illu-
mination algorithm to date. Although biased, the algorithm is able to produce near pho-
tographic images in a reasonable amount of time. It can also elegantly handle rendering
tasks that were very difficult before it was introduced, such as subsurface scattering and the

rendering of participating media.
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Photon mapping solves the global illumination problem in two passes. In the first
pass, the renderer shoots out photons (particles) from the light sources and stores hit records
in a photon map data structure where the photons strike objects in the scene. In the second
pass, ray tracing from the eye is used to generate a displayable image. During the ray
tracing pass, the renderer queries the photon map to estimate indirect illumination, making

the process efficient.

7.7.1 Creating the Photon Map

As mentioned, the first stage of photon mapping traces photon particles from the light
sources into the scene. Simulating a photon’s trajectory is done by generating a light sub-
path in precisely the same manner as in light tracing. An emission point on a light source is
chosen and a photon particle is shot out from the emission point in a randomly chosen di-
rection. The photon then bounces around in the scene, and as it bounces photon hit records
are generated for the (non-specular) intersection points along the growing path. The ren-
derer stores the photon hit records in a k-d tree structure called a photon map to permit later

spatial lookup.

Photon power. One interpretation of the photon map is that each photon represents some
fraction of the power emitted by the light sources, and the photon hit records represent the
incident illumination on surfaces in the scene. The power assigned to a given hit record,
®;, follows directly from the probability with which the photon’s path was generated and
the emissive characteristics of the light sources. Figure 7.12 gives the calculation of ®; in
the general case.

Jensen [2001] points out that ideally, the photon hit records should all contain equal
power. This can be achieved by (1) choosing an emission point and inital direction pro-
portional to the emissive properties of the light sources, (2) choosing reflected directions

proportionally to the the BSDF term and (3) setting p,yzerre proportional to the surface re-
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Figure 7.12: The power assigned to a photon hit, ®;, is calculated similar to the evaluation
of a light subpath.

flectance. If these steps are followed, ®; reduces to ;.. /n, where @, is the total power

emitted by the light sources and 7 is the number of photons emitted from the light sources.

7.7.2 Estimating Radiance with the Photon Map

Given a photon map of the scene, the renderer can estimate the reflected radiance leaving a
surface point x using a process of k-nearest neighbor density estimation. The idea is to look
up the k nearest hit records to x in the photon map and use them to reconstruct the incoming
illumination at x. The kd-tree structure of the photon map makes finding the neighboring
hit records efficient. Once the neighbors have been found, the reflected radiance L, (x — W)

can be estimated as in figure 7.13.

7.7.3 Direct Viewing of the Photon Map and Final Gather

Direct viewing of the photon map. The second pass of the photon mapping algorithm
creates a displayable image by tracing rays from the eye point. The most obvious use of the
photon map would be to replace the reflected radiance at points hit by the eye rays with the

estimate from figure 7.13. In practice, this does not work well, however, since the radiance
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Figure 7.13: Radiance estimate based on the photon map. The reflected radiance at x can
be approximated as the sum of the contributions of the k nearest photon records, divided by
the area in which the neighbors were found (77> where r is the distance to the k' nearest
photon). Note that a cosine term is not needed since the density of photon hits on the
surface is naturally proportional to the cosine of the incoming angle.

estimate is generally not accurate enough for direct viewing. The left side of the image in
figure 7.14 demonstrates the typical blurring artifacts that result from directly viewing the

photon map.

Final gather and the caustics map. Most of the blurring artifacts caused by directly
viewing the photon map can be eliminated by performing a final gather step, which esti-
mates radiance using the photon map on the second bounce rather than the first. In this
scheme, the radiance at x is determined by sending out a number of probing rays, and es-
timating the radiance at the probed locations using the photon map. Although the final
gather step is expensive, it is still much more efficient than standard path tracing for the
same image quality in most situations.

One notable problem with final gather is that it will not work for very shiny or
specular surfaces. Jensen’s solution to this problem is to define a separate “caustics” photon
map that only includes photon hits that have just bounced off of specular surfaces. The
caustic lighting can then be estimated directly from the caustics map, while other lighting
is computed in the final gather step. The caustics map idea works because photon hits

naturally. concentrate.in, caustic regions, leading to a more accurate radiance estimate. The

135

www.manaraa.com



right half of the image in figure 7.14 shows the improvement in quality that results from
rendering with a final gather step and separate caustics photon map. While the quality
is much improved over path tracing with a similar number of samples, some blurring is
evident in the caustic below the glass ball. Additionally, the diffuse spheres inside the glass

ball look mottled because the sample density in the caustics photon map is low there.

Figure 7.14: Direct viewing of the photon map (left) produces a very blurry image. Per-
foming a final gather step (right) eliminates most of the image artifacts.

7.8 Instant Radiosity

While photon mapping uses particle hits to estimate the radiance arriving at different points
in a scene, instant radiosity [Keller, 1997] turns the particle hits into virtual point lights.
The hit records in a photon map represent the illumination arriving at surfaces in the scene.
By converting the hit records into point lights that shine according to the BSDF term of the
surface they are attached to, a representation of the light leaving scene surfaces is created.
Thus, like photon mapping, instant radiosity is a two pass algorithm. In the first pass, a
small number of particles (a few hundred or so) is traced through the scene. The particles
are deposited on surfaces, and the hit locations are turned into point lights. The second
pass of the algorithm renders an image using the virtual point lights in place of the scene

illumination.
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Figure 7.15: Instant radiosity evaluates the radiance as the sum of contributions from
the virtual point lights scattered through the scene. (For virtual point lights created at the
particle emission points on the light sources, the value ®;f,(¥ < x < p;) is replaced by

Le(pi— x)/Parea(Pi) )-

7.8.1 Creating the Point Lights

An instant radiosity renderer creates the virtual point lights it needs in an initial pass that
is essentially the same process as building a photon map. The renderer shoots out particles
from the light sources and creates point lights at surface intersections along the particle
trajectories. Unlike in photon mapping, however, the renderer creates point lights at the
particle emission points on the light sources as well as the intersection points. This has the
effect of reducing all of the illumination in the scene, direct and indirect, to a uniform and

simple representation (point lights).

7.8.2 Rendering based on Point Lights

Once the point lights have been created, the scene can be rendered. Figure 7.15 demon-
strates this calculation. Rendering from virtual point lights has a number of advantages
over other Monte Carlo methods such as path tracing and photon mapping with a final
gather step. First, unlike photon mapping, which introduces bias into the reconstruction,

the radiance estimate in instant radiosity (figure 7.15) is unbiased. Also, since the same
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set of point lights is used to illuminate every point in the scene, instant radiosity render-
ings appear very smooth. Furthermore, reducing the illumination to point lights allows for
efficient hardware rendering.

On the other hand, there are a number of drawbacks to representing the scene 1il-
lumination as a set of point lights. One issue is that shadow boundaries will not appear
smooth unless a large number of lights is used. For example, in figure 7.16 the shadows
of individual point lights are clearly visible. Short range effects are another problem. Be-
cause the point lights are a discrete approximation to continuous scene lighting, areas near
the point lights will appear too bright, leading to artifacts in concave corners. A number of
these are visible in figure 7.16. The typical remedy for this problem is to clamp the distance
d in the radiance calculation to some minimum value. This reduces spurious bright spots
in the image, but at the price of darkening edges near concave corners in the scene. Finally,
like the final gather step in photon mapping, instant radiosity cannot render caustic effects.
This can be seen in figure 7.16, where the the caustic below the glass ball and the lighting

on the diffuse spheres inside it are missing.

Figure 7.16: Instant radiosity, tracing 64 particles to create the virtual point lights.

7.8.3 Reducing the number of Point Light Evaluations

Probably the biggest concern with instant radiosity is that the number of point lights needed

to.create an.accurate.approximation to the scene illumination may be very high. This is
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particularly true if the scene contains glossy surfaces. Wald et al. reduce the number of
point light evaluations that are needed per pixel by interleaving the lights over a small
neighborhood and interpolating the resulting illumination. A more recent technique, light-
cuts [Walter et al., 2005] reduces the number of evaluations by grouping the lights into
hierarchical clusters, allowing a single point light within each cluster to act as a repre-
sentative for the entire cluster. This work was followed on by multidimensional lightcuts
[Walter er al., 2006], which clusters eye rays within a pixel as well as virtual point lights.
By choosing a representative from a group of eye rays and a representative from a group of
point lights, the illumination between a group of eye rays and a group of point lights can

be approximated with a single point light evaluation.

7.9 Bidirectional Path Tracing

In previous sections, we have seen that light paths can be created either from the eye
point (path tracing) or from the light sources (light tracing), with each sampling direc-
tion having distinct advantages over the other. Furthermore, several of the particle trac-
ing methods (photon mapping and instant radiosity) are “bidirectional” in the sense that
lighting information propagates both from the eye point and the light sources. Bidirec-
tional path tracing, developed nearly simultaneously by Lafortune and Willems [1993] and
Veach and Guibas [1994], takes the bidirectional sampling concept a step further. A bidi-
rectional path tracer samples the illumination in a scene by creating both an eye subpath
and a light subpath. The vertices of the two subpaths are then connected together as shown
in figure 7.17, resulting in a number of bidirectional light paths. The benefits of creat-
ing light paths in this manner are two-fold. First, starting from both the eye point and
light sources allows bidirectional path tracing to retain the best qualities of both sampling
strategies. Second, the average cost of creating light paths is reduced since most of the ray

casting operations are reused by several light paths.
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light subpath

eye subpath

Figure 7.17: In a bidirectional path tracer, sampling begins with both an eye subpath and a
light subpath. Complete light paths are created by connecting vertices from the eye subpath
to vertices in the light subpath.

7.9.1 Evaluating Bidirectional Light Paths

To create a bidirectional light path, a bidirectional path tracer connects a vertex of an eye
subpath to a vertex of a light subpath in a deterministic step similar to the connection made
for an explicit light path. The connection is so similar that a bidirectional light path can
be thought of as just an explicit light path in which the light source has been allowed to
stochastically migrate through the scene. In fact, we have already seen this phenomenon
with the virtual point lights created in instant radiosity. Figure 7.18 gives an example

bidirectional path.

7.9.2 Implementation Concerns in Bidirectional Path Tracing

Distribution of paths lengths. An important consequence of connecting each vertex of
the light subpath with each vertex of the eye subpath is that the number of light paths of
different lengths is not uniform. For example, figure 7.17 shows the nine light paths created
by connecting a light subpath of length 2 with an eye subpath of length 2. Of the nine paths,
only one is of length 5, but three are of length 3, resulting in oversampling of that length. To
compensate for this effect, the value of L from figure 7.18 must be divided by the number

of paths that will be created at that length.
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Figure 7.18: A bidirectional light path is created by connecting an eye subpath to a light
subpath. The light subpath can be thought of as a stochastic migration of the light source.
Note that the top line of the calculation is the same as the photon power (®;) from photon
mapping and instant radiosity.

Specular vertices. Specular vertices in the light or eye subpaths do not need to be con-
nected, since the probability of sampling the specular direction by a direct connection will

be zero.

Treating the eye subpath as an implicit light path. In addition to the light paths created
by connecting the light and eye subpaths, the eye subpath itself may form implicit light
paths. These implicit paths must be included because some lighting effects, such as caustics

seen in reflection, cannot be sampled by explicitly connecting subpaths.

Russian roulette to avoid visibility tests. As the lengths of the eye and light subpaths in-
crease, the number of possible connections increases dramatically (# connections =
(eye subpath length + 1) x (light subpath length + 1)). Russian roulette can be used to
eliminate the bulk of the visibility tests. First the contribution of each connection is evalu-
ated without visibility. Then, Russian roulette is used to decide if the visibility test is worth

the effort.
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7.9.3 Results of Bidirectional Path Tracing

Figure 7.19 shows a rendering of the three spheres scene made with bidirectional path
tracing. Compared to standard path tracing (figure 7.7), many parts of the image are much
smoother, particularly the caustic below the glass ball. However, the lighting on the spheres
inside the glass ball, and the middle sphere seen in reflection is just as noisy as in the path
tracing case. This is a consequence of the fact that caustics seen through specular surfaces
are only sampled by implicit light paths, so bidirectional path tracing offers no sampling

advantage in these regions.

Figure 7.19: Bidirectional path tracing.

7.10 The Measurement Contribution Function

By now it should be apparent just how cumbersome light transport notation can be. To make
matters worse, each new algorithm introduces new equations that are similar, but not iden-
tical, to those used by previous algorithms. In part to counter this problem, Veach [1997]
showed that the notation for many ray based global illumination algorithms can be unified

by rewriting the measurement equation in terms of area instead of solid angle. He started
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by writing the rendering equation in terms of points in the scene rather than in terms of a

point and incoming and outgoing directions as follows:

2%)
X0

Xq

L(x1 —>X()) = Le(xl —>)C()) + /Mfs<)C0 — X1 <—>)C2) G(x1 <—>XQ) L(XQ —>X1) dxp, (7.6)

where M is the union of all surfaces in the scene and G(x; <> x;), called the geometry term,

converts area measure to projected solid angle measure:

|cos 6 cos g

Glx—y)=V(x<y) e

(7.7)

Next, Veach performed a Neumann expansion on the new form of the rendering
equation, resulting once again in an infinite set of terms, except that this time the terms
were defined over areas on surfaces rather than directions on the sphere. We can think of the
terms of this expansion as describing the differential, or derivative of, light flow along light
paths of particular lengths, with respect to sampled surface area. By extracting the term for
a particular light path and multiplying by the importance for pixel j, A (xo — x1), Veach
was able to determine the differential contribution of the light path to pixel j in the absence

of probability. He called this the measurement contribution function (see figure 7.20).

The path probability. A main advantage of the measurement contribution function over
other representations is that it describes the contribution of a light path to a pixel with-

out regard to how the path was created. Based on similar arguments, we can also define
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Figure 7.20: The measurement contribution function. For a light path with vertices
(xo...x,) contributing to pixel j, the measurement contribution function F; (xo...x,) de-
termines the differential contribution from the light path to the measurement at pixel j.

the probability with which a light path was generated in a way that is independendent of
how it was generated. This path creation probability, pyum, is simply the product of the

probabilites of choosing each point in the path with respect to area:

n
Ppath(xO . -xn) = Hparea(xi)- (7.8)
i=0

By combining the measurement contribution function with the path creation probability,
we can calculate the Monte Carlo contribution of a light path sample to pixel j as

-~ Fl(x0...xn)

L(X] —>X()) = ppath(xO - .xn) (79)

no matter how the path was created, provided that we can evaluate Fnj and ppg. This
derivation does not mean to suggest that the primary sampling method in a global illumina-
tion renderer should be choosing points on surfaces—quite the contrary, it is merely pointing
out that by converting all probabilities to be in terms of surface area, a unified method of

evaluation results.
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Example conversions. Let’s look at a couple of conversions to area probability. Often,
when sampling a BSDF, the probability is expressed in terms of solid angle. We can convert

solid angle probability to area probability based on equation 4.6:

Pangle COS @
Parea = %- (7-10)

As a second example, consider sampling points on the image plane in pixel coordinates.
When a pixel coordinate is chosen, we would like to determine the probability that the
surface hit by the ray passing through that coordinate was chosen, with respect to area.
Instead of going through a long derivation, we simply observe that pg., in this case must
cancel out the terms W (xo — x1)G(xo < x1) from the measurement contribution function

to make path tracing work properly. Thus the probability must equal

Ppixel

, (7.11)

Parea = —
are W (xg—x1) G(xg > x1)

where pp;x; 18 the probability of choosing the pixel coordinates with respect to pixel area,
Wej is the importance for a pinhole camera (equation 7.3), and G is the geometry term

(equation 7.7).

7.11 Metropolis Light Transport

One of the most interesting global illumination algorithms to emerge in the past decade is
Metropolis Light Transport, or MLT [Veach and Guibas, 1997]. Unlike the other ray based
global illumination algorithms introduced in this chapter, MLT does not rely on Monte
Carlo integration. Instead, it relies on a different statistical integration technique called

Metropolis sampling [Metropolis et al., 1953; Pharr, 2003]. The main strength of MLT lies
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in its ability to explore local regions of the space of light paths in an unbiased way. This
makes MLT particularly attractive for hard sampling problems in global illumination such

as caustics and light shining through small aperatures.

7.11.1 Metropolis Sampling

Suppose that we want to approximate a function f over some domain, D. One way to do
this is to produce a sampling distribution proportional to f and then make a histogram of
samples taken from the distribution. The resulting histogram will be proportional to f,
so it only needs to be scaled to approximate it. Metropolis sampling uses this method to

approximate functions, and can be summarized as follows:

e Create a sampling distribution proportional to f.
e Make a histogram of samples taken from the sampling distribution.

e Scale the histogram to approximate f.

In the case of an image, f is defined on some subset of R2, and the histogram contains
one bin for each pixel in the image. The scale factor, s, needed to make the histogram
approximate f is the ratio of the average value of f in the sampling domain, fg., to the

average number of samples per bin in the histogram, /,y.:

N :fave/have (7.12)

In practice, f4. can be estimated by averaging a large number of samples selected at ran-

dom from the sampling domain.

7.11.2 Creating a Sampling Distribution
Detailed balance. The Metropolis algorithm uses an idea called detailed balance to create

a sampling distribution proportional to f. An intuitive way to think about detailed balance
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X yr
Figure 7.21: Detailed balance. The desired (stationary) distribution will be maintained as

long as the number of samples flowing between any two bins X and y in the histogram is
balanced. In other words K (x —y) = K(y —X).

is to imagine that a histogram proportional to f already exists. This distribution of samples
is called the stationary distribution. Now imagine that a transition function exists that
allows samples to flow between bins in the histogram. The stationary distribution will be
maintained as long as the number of samples flowing from one bin in the histogram to
another is the same as the number of samples flowing back. This property is called detailed
balance. Let K denote a transition function that obeys the detailed balance property. (See
figure 7.21.)

An important consequence of detailed balance is that if a single sample is allowed
to migrate in the domain of f according to K, it will eventually trace out the stationary
distribution (proportional to the function we want to approximate). The strategy adopted
by Metropolis sampling is to create a suitable K function and then use it to migrate a single
sample though the domain of f. As the sample moves, a histogram of its location is kept,

and this histogram is used to approximate f.

Defining the transition function. The function K is defined by using a tentative tran-
sition function T, also known as a mutation strategy. T(x —y) gives the probability of
choosing point y as the proposed next sample location if x is the current sample location.

To complete K, a tentative sample location y is chosen based on 7', f is evaluated at x and
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y, and the next sample location either migrates to y with probability a(x —y), or remains

at x with probability 1 — a(x—y), where

(7.13)

The copyImage function in figure 7.22 uses Metropolis sampling to copy an image.
This is not a very useful way to copy an image, but it does provide a good example of
Metropolis sampling in action. Copylmage uses a very simple mutation strategy, namely
choosing a random point on the image plane with a uniform probability, but a wide range of
transition functions can be used. Later we will see that the power of Metropolis sampling

lies in choosing good mutation strategies.

7.11.3 Color Images

The Metropolis sampling framework can easily be extended to handle color images by
redefining the histogram to accumulate in color. The luminance of the color samples at
points x and y is used to define a(x —y), and colors added to the histogram are scaled
to have a luminance of 1. Figure 7.23 shows how this might look in code. Note that any
additive color space can be used for the histogram. In the common case of RGB, luminance

is defined as (0.299 R + 0.587 G + 0.114 B).
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void copylmage(float F[w][h], float histogram[w][h], int mutations)
{

int i, x0, x1, y0, y1;

float Fx, Fy, Txy, Tyx, Axy;

// Create an initial sample point
x0 = randomlInteger(0, w-1);
x1 = randomlInteger(0, h-1);

Fx = F[x0][x1];

// In this example, the tentative transition function T simply chooses
/I 'a random pixel location, so T(x->y) and T(y->x) are always equal.
Txy =1.0/(w * h);

Tyx=1.0/(w * h);

/I Create a histogram of values using Metropolis sampling.
for (i=0; i < mutations; i++) {
// choose a tentative next sample according to T.
y0 = randomInteger(0, w-1);
y1 = randomlInteger(0, h-1);
Fy = FlyOl[y1];
Axy = MIN(1, (Fy * Tyx) / (Fx * Txy)); // equation 7.13.
if (randomReal(0.0, 1.0) < Axy) { //jump to y with probability a(x->y)
x0 = yO0;
x1l =yl;
Fx =Fy;
}

histogram[x0][x1] += 1; // increment histogram

Figure 7.22: The copylmage function. This function uses Metropolis sampling to make
a histogram from an image that is passed in the F array. It is assumed that the histogram
array is initialized to be all zeros. After the function returns, the histogram can be scaled to
approximate F. Below the code are several images created using copylmage. The original
image is approximated using an average of 1 (left), 8 (middle) and 256 samples per pixel
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DomainLocation X,Y;

for (i=0; i < mutations; i++) {

Y = mutateAccordingToT(X);

Tyx = T(Y, X);

Txy = T(X, Y);

colorY = F[Y.xloc][Y.yloc];

Fy = colorY.luminance();

colorY /= Fy; // scale colorY to have luminance 1

Axy = MIN(1, (Fy * Tyx) / (Fx * Txy));

if (randomReal(0.0, 1.0) < Axy) { // jump to y with probability a(x->y)
X=Y;
Fx =Fy;
colorX = colorY;

}

histogram[X.xloc][X.yloc] += colorX; //increment histogram

Figure 7.23: Accumulating in color. The image and histogram have both been converted
to color arrays. Fx and Fy are redefined to be luminance values, and colors added to the
histogram have a luminance of 1. In addition, the mutation strategy and pixel coordinates
of each sample have been encapsulated. In the case of MLT, the DomainLocation structure

will not only contain a pixel location, but will include an entire light path.
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7.12 From Metropolis Sampling to MLT

Metropolis light transport is nothing more than a version of Metropolis sampling that eval-
uates light paths using the measurement contribution function (section 7.10) instead of
directly evaluating image pixels. Since the measurement contribution function is defined in
terms of surface area, the value of the transition function 7 must also be defined in terms of
surface area, so we write it as T,.,. Putting these two facts together, if 7., mutates path

X = (xp...X,) to pathy = (y9...ym), the acceptance probability a(x —y) will be

k

a(x—y)= min{l7 Fm(y) Lareay =X) } , (7.14)

Fn] (X) Torea (X - Y)

where j is the pixel to which path x contributes, and k& is the pixel to which path y con-
tributes.? This is true no matter what mutation strategy is used. Of course, the hard part is
determining 7.4, SO we will give some examples of this in the next section. Figure 7.24

gives pseudocode for the main loop of MLT.

7.12.1 MLT Mutation Strategies

Restrictions on mutation strategies. There are two main restrictions on the types of
transition functions that can be used to form a mutation strategy. First, the transition proba-
bilities Tyeq(x—y) and Ty, (y — X) or their ratio must be computable. Second, every part
of the space of light paths must be reachable from every other part. The second restriction
ensures the so called “ergodicity” condition, which means that the distribution of samples

will eventually converge to the stationary distribution.

2 If a light path contributes to more than one pixel, the F values should be replaced by the sum of the
contributions over all pixels to which the light path contributes.
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LightPath X, Y;
Color colorX, colorY;
float Txy, Tyx, Fx, Fy, Axy;

for (i=0; i < mutations; i++) {

Y = mutateAccordingToT(X);

Tyx = Tarea(Y, X);

Txy = Tarea(X, Y);

colorY = evaluateMeasurementContribution(Y);

Fy = colorY.luminance();

colorY /= Fy;

Axy = MIN(1, (Fy * Txy) / (Fx * Tyx)); // calculate a(x->y)

if (randomReal(0.0, 1.0) < Axy) { //jump to y with probability a(x->y)
X=Y;
Fx =Fy;
colorX = colorY;

}

histogram[X.xloc][X.yloc] += colorX; //increment histogram

Figure 7.24: Pseudocode for the main loop of MLT.

Combining transition functions. It may be difficult to design a single mutation strategy
that efficiently samples all of the lighting in a particular scene. It is much easier to design
transition functions around specific sampling problems, and then combine them to form a

robust mutation strategy.

New Path Mutations: A First MLT Mutation Strategy

One obvious mutation strategy is to create a new random light path at a random pixel
location using standard or bidirectional path tracing. We call this a new path mutation. For
a new path mutation, 7y, is not dependent on the starting state, S0 Tyreqa(X—Y) = Pparn(¥)s

and

a(x—y) :min{l, M} Zmin{l, ;@}7

F/ (x) Ppath (y)
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or in other words, in a new path mutation a(x—y) is the ratio of the Monte Carlo estimates
of the mutated path and the original path.

In practice, new path mutations do not work well by themselves. However, they
are useful in two ways. First, because they can reach any part of the space of light paths,
new path mutations guarantee the ergodicity condition. Second, new path mutations can
be used to estimate the average pixel brightness (just average the L values from all the new

paths).

Heckbert’s Regular Expressions

Heckbert [1990] devised a regular expression notation to describe different types of light
paths, which Veach and Guibas adopted for their MLT descriptions. In Heckbert’s notation,
L stands for a light source, D is a non-specular surface, S is a specular surface, and E is the
eye point. These interaction letters can be combined in regular expressions to describe full
light paths. For example, the light path LDS*E begins at the light source, and propagates
through one non-specular bounce and zero or more specular bounces before joining with

the eye point.

Mutations Starting With the Eye Point

Veach and Guibas describe several mutations that attempt to move the current light path
starting at the eye point. The basic idea behind these mutations, which are referred to as
lens perturbations and multi-chain perturbations, is to create a new light path by perturbing

the pixel coordinates of the current light path. This process can be summarized as follows:

e The mutation routine perturbs the pixel location of the current path by an exponen-
tially distributed random amount as described in figure 7.25. Let x| be the point seen

through the original pixel location, and let y; be the point seen through the mutated
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void exponentialPixelOffset(float r1, float r2, float &x, float &y)
{

float phi = randomReal(0.0, 1.0) * 2.0 * PI;

float r =12 * exp( -log(r2/r1) * randomReal(0.0, 1.0) );

X +=r1 * cos(phi);

y +=1 * sin(phi);
}

Figure 7.25: Exponentially distributed pixel offset. The above function perturbs the
pixel location (x,y) by an exponentially distributed random distance r between r| and r».
Veach and Guibas suggested values of 0.1 pixels for r; and about 10% of the image width

for rp.

void exponential AngularOffset(float thetal, float theta2, Point &N)
{

/l Make a UVN coordinate system from N

Point U, V;

if (fabs(N.x) < 0.5) U = N.cross(Point(1,0,0));

else U = N.cross(Point(0,1,0));

U.normalize();

V = U.cross(N);

// Determine offsets using the approximation 6 ~ sin 6
float phi = randomReal(0.0, 1.0) * 2.0 * PI;
float r = theta2 * exp( -log(theta2/thetal) * randomReal(0.0, 1.0) );

// Calculate the new direction
N =N + r*cos(phi)*U + r*sin(phi)*V;
N.normalize();

Figure 7.26: Exponentially distributed angular offset. The above function perturbs the
direction N by a random angle that is exponentially distributed between 6; and 6,. We
assume that N is normalized and 6; and 6, are small. Veach and Guibas suggested values

of 0.0001 radians for 6; and 0.1 radians for 6,.
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pixel location. The transition probability for this operation, T}, (x1 — y1), is equal
to the area probability for y;, which by equation 7.11 is proportional to>

1
W (yo—y1) G(yo—y1)

Tpixel (xl _)YI) o<

e Starting at the eye point, the new subpath is propagated through the same number
of specular bounces as the original path. The same reflection mode is used at each
path vertex as was used by the corresponding vertex in the original path (reflection or
refraction). It may not be obvious how to compute the transition probability for this
operation, but we can think of specular propagation as sampling a direction with re-
spect to solid angle, where p,/. is infinite. Consequently, we can use equation 7.10

to determine the transition probability:

cos
Tspecular (Xn = yn) o< dz% .

e For a lens perturbation, the first non-specular vertex (counting from the eye point) is
connected directly to the next vertex of the original path, which must also be non-
specular, or the light source. For example, in the path LDSSE, the suffix ...DSSE is
replaced by a new one of the same form, and the new subpath is connected directly
to the point L from the original path.* This operation does not have a probability
since no points in the path are changed, but the visibility of the connection must be

checked.

e In a multi-chain perturbation, the outgoing direction from the first non-specular ver-

tex (counting from the eye point) is perturbed by a random angle, as described in

3 It may be difficult to calculate the exact transition probability between two points for a given operation,
but as long as we can calculate something proportional to it, the ratio T (x —y)/T (y — x) will be preserved,
and the acceptance probability will be calculated correctly.

4 In a path such as LSSE, no explicit connection is needed. The mutation simply stops when the light
source is reached.
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figure 7.26. As with the specular propagation, the transition probability for this op-

eration is

cos
TperturbAngle (xn _>yn> o< d2¢n .

The new subpath is then propagated through the same number of specular bounces
as the original path, arriving at the next non-specular surface, with each specular
bounce having a transition probability of T ,ec./q,- If the vertex after this non-specular
vertex in the path is also non-specular, the new subpath can be joined back onto the
remainder of the old path (with no transition probability). Otherwise, the path must
be propagated through another chain of specular bounces. This process repeats until
the old path is exhausted, or a pair of non-specular vertices is found. For example,
consider the light path LDSSDSE. A new suffix of the form ...DSE is generated
starting at the eye point. The direction of the outgoing ray from D is perturbed and
the path is propagated through two specular bounces to form the subpath ... DSSDSE.
Since the next vertex in the original path is non-specular (L), the new subpath can
be connected directly to the next vertex of the original path, L. Figure 7.27 gives

pseudocode for a muti-chain perturbation.

There are several reasons why a lens or multi-chain perturbation may fail to create
a new light path. For instance, one of the specular vertices of the original path may migrate
to a non-specular surface. Also, the new path may fail to hit a light source, or consecutive
points along the mutated path may not be mutually visible. Finally, the mutated path may
no longer lie within the pixel bounds of the image. If any of these situations occurs, the
mutation is rejected.

If the mutation successfully creates a new light path y from path x, the renderer
can calculate the acceptance probability a(x —y) based on equation 7.14. The values for
Tarea(x —y) and Ty, (y — X) are calculated as the product of all of the transition events
that went into the mutation. Infinite values in £/ (x) and FX(y) that result from specular

surfaces.can-be-eliminated-byreplacing delta functions in the BSDFs with a value of 1.
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Lens subpath or multi-chain perturbation

1. Perturb the pixel location. (Transition probability = T);y;)
2. While the next vertex is specular
Propagate through the specular vertex. (Tpecuiar)
3. If we are doing a lens subpath mutation, go to step 6.
4. Perturb the outgoing direction. (TpersurbAngie)
5. While the next vertex is specular
Propagate through the specular vertex. (T;pecuiar)
6. Connect to the next vertex if it is not specular, else go to step 4.

Figure 7.27: A multi-chain perturbation modifies the current path starting at the eye point.

Mutations Starting at the Light Source

Some lighting situations can be sampled better by mutations starting at the light source
instead of the eye point. Veach and Guibas describe a mutation strategy called a caustic
perturbation that moves the current path starting at the light source. They use this mutation
type to sample paths of the form LS*DE or ...DS*DE.

Caustic perturbations are created in much the same way as lens perturbations, ex-
cept that they start at the light source, or second diffuse vertex in the path from the eye
point. The mutation routine perturbs the direction L — S (or D — §) by a random angle as
in figure 7.26. The transition probability of this operation is once again Tpe/rurbAngle-

The new subpath is then propagated through the same number of specular bounces
as the original path, creating the subpath LS*D... or ...DS*D.... As with lens subpath
mutations, the transition probability of propagating through a specular vertex is Typecutar

but using 6, instead of ¢,,.
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Figure 7.28: A caustic perturbation can efficiently sample paths of the form LS*DE. The
mutation routine replaces the subpath LS*D ... starting at the light source. The new subpath
is then connected directly to the eye point.

Finally, the renderer connects the mutated subpath directly to the eye point. Note
that since the direction D — E has changed, the pixel coordinates of the new light path
will have changed as well, and must be calculated as in section 7.6.2. Figure 7.28 shows a

caustic perturbation graphically.

7.12.2 MLT results

Figure 7.29 compares the results obtatined using Metropolis light transport and bidirec-
tional path tracing. In the top row of the figure, bidirectional path tracing achieves approx-
imately the same quality as MLT. (Standard path tracing, not shown, would only produce
a few bright speckles to represent the caustics.) The second row of images zooms in on
one of the caustics. This has the effect of breaking down the ability of the bidirectional
path tracer to sample the caustic light paths. Conversely, MLT is able to concentrate more

samples on the caustic, producing a much smoother result.

7.13 A Simple and Robust Formulation of MLT

Kelemen et al. [2002] created an alternate formulation of MLT that is simpler in many
ways than Veach’s original description. Instead of relying on a measurement contribution
function defined over surface areas, Kelemen et al. work “in the space of uniform random

numbers used to build up paths.” To put it another way, we can think of each light path

158

www.manaraa.com



Figure 7.29: Comparison of bidirectional path tracing to Metropolis Light Transport. In
this scene, the ring is faceted, creating detailed ray patterns in the caustics. The images
on the left were made with bidirectional path tracing using 100 paths per pixel. On the
right, the images were created with MLT using 100 mutations per pixel (approximately the
same number of ray queries). As suggested by Veach and Guibas, direct lighting in the
Metropolis images was computed using standard path tracing.

as being represented by a vector of numbers between zero and one. For example, the light
path x = (xg...x,) might be represented by the vector of numbers i =<uy...u,>. We
use over-arrow notation and angle brackets to distinguish between the random numbers
in # and the 3D points that make up x. This space of numbers can be thought of as the
primary sample space in which a path tracer, or bidirectional path tracer works. Some of
the numbers may be used to choose a pixel location, while others may sample a BSDF or
a light source. Still others may be used for Russian roulette, and so forth, but however the
numbers are used, ¥ must completely define x.

The simplicity of the new formulation becomes apparent when one tries to create a

fine the acceptance probability for it. First, within the area measure
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of the random number space, the measurement contribution function is just the Monte Carlo
estimate of the associated path: F; (if) = L(i).5 In addition, mutations within the space of
random numbers are simpler as well. Kelemen et al. showed that two mutation types, “large
steps” and “small steps”, are sufficient to produce most of the results from Veach’s original
formulation. A large step simply discards the current vector of numbers and creates a new
one from scratch, and a small step perturbs each number in the current vector by a small
random amount (within about 0.05 units of the current value), allowing the numbers to
wrap around if they go above 1 or below 0. With respect to the space of random numbers,
the transition probabilities between any two points are equal for both large and small steps.
Thus, T'(i —V) =T (V—i) and

L(7)

a(i—V)=min 1, =

L(i)

for both large and small steps, a much simpler result than with standard MLT.

Algorithmically, the new form of MLT proceeds as follows: the renderer mutates
the current vector # to produce v, randomly choosing a large step or a small step. Next,
the renderer constructs the path associated with ¥V and evaluates Z(\_z’) It then jumps to V
with probability a(## — V), or it retains # with probability 1 — a(ii — V). Finally, the renderer
deposits a single sample on the image plane at the resulting pixel location (histogram bin),
and the process repeats.

One issue with the new formulation is the length of the number vectors. Because of
Russian roulette or other concerns, a vector may not have enough numbers in it to define
a complete light path after a mutation. This problem can be solved by lazily adding new
random numbers to mutated vectors as needed during small step mutations, and resetting

the size of the vector during large steps to exactly the requirements of the mutated path.

5 This is a bit of abuse of notation, but what we mean is that the measurement contribution of the light
path derived from i, with respect to the area measure of the random number space, is equal to the Monte
Carlo estimate of the associated path.
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Figure 7.30 shows the three spheres scene rendered using the simple and robust
MLT formulation. Note that while some speckles remain in the image, they are much dim-
mer than in standard and bidirectional path tracing. This suggests that MLT will converge

to an artifact-free image more quickly than these methods.

Figure 7.30: MLT using the simple and robust formualation.
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Chapter 8

Energy Redistribution Path Tracing

A version of this chapter was published as:

David Cline, Justin Talbot and Parris Egbert. Energy Redistribution Path Tracing. ACM
Transactions on Graphics, 24(3):1186-1195, 2005.

Abstract. We present Energy Redistribution (ER) sampling as an unbiased method to
solve correlated integral problems. ER sampling is a hybrid algorithm that uses Metropolis
sampling-like mutation strategies in a standard Monte Carlo integration setting, rather than
resorting to an intermediate probability distribution step. In the context of global illumi-
nation, we present Energy Redistribution Path Tracing (ERPT). Beginning with an inital
set of light samples taken from a path tracer, ERPT uses path mutations to redistribute the
energy of the samples over the image plane to reduce variance. The result is a global il-
lumination algorithm that is conceptually simpler than Metropolis Light Transport (MLT)
while retaining its most powerful feature, path mutation. We compare images generated

with the new technique to standard path tracing and MLT.
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8.1 Introduction

Today, a number of rendering programs exist that can produce photorealistic output. Meth-
ods that create such “synthetic photographs” by measuring light transport are collectively
known as global illumination algorithms. The distinguishing characteristic of a global illu-
mination algorithm, as opposed to an ad-hoc lighting algorithm, is the goal of accounting
for all light scattering events that lead to the creation of an image. In a very real sense, the
process of global illumination is a physical simulation in which light transport paths are
followed through a virtual scene and recorded on a virtual film plane.

The most versatile global illumination algorithms currently available are based on
ray tracing and numerical integration. [Kajiya, 1986] was the first to publish a global il-
lumination algorithm of this type. Drawing on heat transfer literature and Monte Carlo
integration theory, Kajiya described the now classic path tracing algorithm, which samples
the light reaching the image plane by tracing potential light paths backwards from the eye
point.

Despite the generality of path tracing, it can be quite inefficient even in common
lighting situations. The reason for this inefficiency is variance in the Monte Carlo light esti-
mate, which shows up as noise in a rendered image. Practically speaking, the Monte Carlo
sampler does not have enough global context to quickly find all of the important light trans-
port paths. Importance sampling techniques, such as those described by Veach and Guibas
[1995] and Lawrence et al. [2004] can provide some of this context, but usually only in a
local way.

Noting the difficulty of finding all of the significant light transport paths starting at
the eye point, Lafortune and Willems [1993] and Veach and Guibas [1994] independently
developed bidirectional path tracing, which generates paths starting at the light sources as
well as the eye point. Some parts of path space are better sampled this way, so variance is

reduced.
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Other techniques cache and interpolate portions of the light transport that are sim-
ilar between pixels, reducing variance at the expense of biasing the solution. Irradiance
caching [Ward er al., 19881, density estimation [Shirley et al., 1995] and photon mapping
[Jensen, 1996] all take this approach.

An innovative global illumination algorithm that has received a lot of attention in
recent years is Metropolis Light Transport (MLT) [Veach and Guibas, 1997]. MLT replaces
the Monte Carlo integrator used in path tracing with a Metropolis sampler. The main ad-
vantage of the Metropolis algorithm over Monte Carlo integration is the ability to preserve
the sampling context. This is done by using path mutation to explore path space in a lo-
calized way. Thus, when high contribution paths are found, nearby paths will likely be
explored as well.

Since the original 1997 paper, researchers have sought to extend the MLT algorithm
in a number of ways. Pauly et al. [2000] added mutation strategies to MLT that handle
participating media such as smoke and fog. Kelemen e? al. [2002] simplified the MLT al-
gorithm, and increased the mutation acceptance rate, by defining mutation over an abstract
space of random numbers rather than the geometric space of ray paths. Other work has
focused on the statistical properties of MLT. Szirmay-Kalos et al. [1999] characterized the

start-up bias problem of the algorithm, and Ashikhmin ez al. [2001] analyzed its variance.

Combining path tracing and MLT. In this chapter we propose a new global illumina-
tion algorithm that combines Monte Carlo path tracing with Metropolis Light Transport
mutation strategies. The algorithm works by redistributing the energy of initial path traced
samples over the image plane, so we call it Energy Redistribution path tracing, or ERPT.
Our motivation for combining path tracing and MLT comes from the observation
that Monte Carlo integration tends to be easy to stratify and control, whereas Metropolis
has better convergence properties in many hard sampling situations. However, even though

Metropolis sampling may exhibit better convergence properties at low sampling densities,
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it will still have a worse order of convergence than stratified Monte Carlo sampling if the
dimensionality of the integral is low enough. This effect becomes readily apparent when
comparing MLT to path tracing for direct lighting.

The ERPT algorithm begins with a set of Monte Carlo samples taken from a path
tracer. It then uses a filter step based on path mutation to spread the energy of the MC
samples over the image plane in an unbiased way. Unlike the Metropolis algorithm, which
uses a single, very long Markov chain of sample locations, our algorithm generates shorter
sample chains starting at each path traced sample. We can use short chains because the

initial Monte Carlo step eliminates startup bias.

Organization. The remainder of this chapter is organized as follows: section 8.2 reviews
a number of ideas leading up to ER sampling, including a brief review of Monte Carlo
integration, correlated integrals and energy flow. Section 8.3 describes the ER sampling
algorithm in detail. Section 8.4 presents Energy Redistribution Path Tracing, followed
by comparisons between ERPT, standard path tracing and MLT in section 9.3. Finally,

section 8.6 concludes and suggests ways to improve the algorithm.

8.2 Sampling Issues

This section gives an overview of sampling ideas leading up to ER sampling. We give a
brief overview of Monte Carlo integration, and present the concepts of correlated integrals,
energy flow, and general and detailed balance. Finally, Metropolis sampling is reviewed,
and we show how it relates to energy flow and detailed balance.

8.2.1 Monte Carlo Integration

Consider the problem of integrating the function f over some domain €:

| @) du).
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We place a bar over the x to indicate that it may be a vector rather than just a scalar quantity.
Monte Carlo integration solves this integral by creating a random variable X s with expected

value equal to the integral:

EIX/] = [ () du().

Xy is constructed starting with a sampling procedure S, which generates samples from
Q according to some probability distribution, p. To complete X, a sample location X is

chosen using S, and X (%) is evaluated

K‘\
~—
=1
N—r

X (%) = =2, 8.1)

=
=1
N—

This expression forms an unbiased estimate of the integral, which may have a high variance.
The usual way to reduce the variance is to average a number of samples taken from X . We
will refer to the quantity X (%) as the “initial energy” deposited at point X.

Equation 8.1 can also be rearranged to obtain values of f in terms of X and p:

X (%) p(¥) = f(%). (8.2)

We will refer to X (X)p(%) as the “expected energy” at &.

8.2.2 Correlated Integrals

A good number of integration problems involve the estimation of not just one, but a large
number of integrals. Path tracing is a particularly pertinent example. Each pixel in a path
traced image is an integral that is evaluated using Monte Carlo integration. A standard path
tracer evaluates the pixel integrals independently, but it is well known that the integrals
have highly correlated integrands (see figure 8.1). The most successful correlated integral
solutions tend to exploit the correlation between integrals to reduce variance. In fact, the

correlation between pixel integrands is the implied basis for many of the global illumina-
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Figure 8.1: Correlated integrals in path tracing. A path tracer must integrate the light
incident on surface points seen from the camera. Nearby pixels often have very similar
integrands, as can be seen above. The right images show the incident light at the two pixels
marked by the red dots in the left image.

tion algorithms currently in use, including irradiance caching [Ward er al., 1988], photon
mapping [Jensen, 1996] and Metropolis Light Transport [Veach and Guibas, 1997]. Irra-
diance caching and photon mapping take adavantage of inter-pixel correlation by caching
incident light values, which are later used to approximate parts of the pixel integrals that are
difficult to evaluate independently. MLT leverages the correlation between pixel integrals
in a different way, using mutation strategies to share integrand information between pixels.
Our work takes a similar approach, utilizing path mutations to spread the energy of initial

Monte Carlo pixel estimates over the image plane.

8.2.3 Energy Flow

One way to coordinate sampling efforts between correlated integrals is to use a process of
energy flow. (By energy, we simply mean the value of a real-valued function. For a color-
valued function, such as an image, energy refers to the luminance.) Energy flow allows a

sampling procedure. to perform. a directed search between similar points in the domains of
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correlated integrals. To see why this can be useful, consider two correlated integrals, /; and
I, with domains ; and Q,. Suppose that in the process of sampling, a high contribution
point X is found in Q; (i.e. X(%) is large). Since I; and I, are correlated, it is likely that a
high contribution point y will exist in a location similar to X in ;. Energy flow establishes
a connection between points X and y and transfers some of the energy at x to y. Figure 8.2
shows this graphically. Often, energy flow can be more efficient than standard Monte Carlo
sampling because the cost of finding high contribution points is amortized over multiple

integrals.

x

Q

Figure 8.2: [Energy flow connects points in correlated integrals, and transfers function
energy between them. When done properly, energy flow provides a mechanism for directed
searching within the domains of correlated integrals without biasing the integral estimates.

The expected energy flow. In practice, energy flow is created by perturbing or “mutat-
ing” a source point, X, to produce a destination point, y. (Imagine laying a pipe from X
to ¥ along which energy can flow.) Some of the energy at x is then tranferred to y. Let
T (x — y) be the transition probability from X to y, that is, the probability that ¥ is chosen
as the destination point given that X is the source point. In this situation, the expected flow
from X to y is

E[p(x— )] = E[X;(¥) p(¥) T(X— ) q(x — )], (8.3)

where ¢ (X — ¥) denotes the energy flow from X to y, E[ - ] is the expected value, X (X) p(X)

is the expected energy located at X from an initial Monte Carlo estimate (equation 8.2),
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and g(X — y) is the percentage of energy at X that flows to y once a connection has been

established.

General and detailed balance. Astonishingly, energy flow can occur without biasing the
integral estimates, as long as certain conditions on the flow amount are met. In particular,
the integral estimates will remain unbiased as long as the expected flow of energy out of
any point X equals the expected flow back in. We will refer to this property as general

balance. More formally, we say that general balance holds if

E U¢<fw‘) du(y‘)} —E UW%) du(y‘)} V% (8.4)

An even stronger constraint that guarantees unbiased-ness is called detailed balance. De-
tailed balance requires that the expected flow between any two points be equal. In other

words,

Elp(x—y)]=E[¢p(y—%)] Vxy. (8.5)

Figure 8.3 illustrates the two kinds of balance graphically.

“

N Y
Xyl o ~ey
R ;

. /,’ \\\ X.<_,,,/'
\
General balance Detailed balance

Figure 8.3: General and detailed balance of energy flow. General balance (left) requires
the total expected flow out of a point to equal the expected flow back in. Detailed balance
(right) requires that the expected energy flow between any two points be equal.
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8.2.4 Review of Metropolis Sampling

Here we provide a brief overview of Metropolis sampling, also called the Metropolis al-
gorithm or the Metropolis-Hastings algorithm. We refer the reader to [Pharr, 2003] for a
more thorough introduction to Metropolis sampling and its application to rendering.
Suppose that it is desired to evaluate a set of correlated integrals, /7 ...1,. Monte
Carlo integration would solve this problem by taking a separate set of samples from each
of the integral domains. Sampling the integrals separately can be inefficient, however,
since the high contribution points in each integral domain must be found independently.
The Metropolis algorithm [Metropolis et al., 1953] takes a different approach that allows
sampling efforts to be coordinated among the different integrals. The main idea is to create
a probability distribution (pdf) that is proportional to the correlated integrals and then draw
samples from this distribution. Metropolis sampling does this by using detailed balance to
migrate a single sample through the domains of the correlated integrals, € ...€Q,. As the
sample moves, a histogram is kept of its location, and the number of samples deposited
in the domain of each integral ends up being proportional to the value of the integral (see

figure 8.4).

[ ~.
@ @@ ;- \[%

Figure 8.4: The Metropolis algorithm evaluates a set of correlated integrals by moving a
sample through the domains of the integrals, tracing out a distribution proportional to the
integral values. Sampling efforts are coordinated because the moving sample can jump
between similar locations in the domains of different integrals.

Metropolis sampling and detailed balance. Instead of using detailed balance to define
the amount of flow in the system, Metropolis sampling uses it to define the acceptance

probability, the probability that flow will occur given a proposed mutation. When flow
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does occur, a single unit of energy is transferred. Thus, the expected number of flow events
between any two points, X and ¥, must be equal for detailed balance to hold, and the ratio

of the acceptance probabilities between points x and y is given by

In practice, it is usually best to maximize the acceptance probabilities, so the actual accep-

tance probability used is

R (17 FHTE—3) )

fEOT(x— )

Limitations of the Metropolis algorithm. Although Metropolis sampling has proven
useful in a variety of sampling contexts, it has several limitations that make it difficult to
use in a global illumination setting. For example, the Metropolis algorithm is based on the
idea of drawing samples from a probability distribution, even though it doesn’t explicitly
calculate a pdf. This framework tends to be less flexible than working directly with function
energies. Metropolis also exhibits the so called “startup bias” problem, which in practice
means that it can only be used if a large number of samples will be taken. Furthermore,
Metropolis sampling does not stratify well, and its convergence characteristics are hard to

analyze.

Metropolis versus ER sampling. As will be seen in the next sections, Energy Redistri-
bution sampling attempts to do away with some of the limitations of Metropolis sampling
while maintaining its most powerful features. ER sampling works directly with function
energies. It eliminates the startup bias problem because it begins with an unbiased Monte
Carlo estimator. Consequently, ER sampling does not require a complete set of mutation

strategies to work (ergodicity is ensured by the initial MC samples). Furthermore, since it
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is an extension of Monte Carlo integration, ER sampling can leverage stratified sampling

and other Monte Carlo variance reduction techniques.

8.3 [Energy Redistribution Sampling

In the last section we saw that Metropolis sampling is closely related to the ideas of energy
flow and detailed balance. In this section, we describe Energy Redistribution sampling, a
new algorithm that exploits these same principles, but directly in a Monte Carlo integration
setting.

Energy Redistribution sampling evaluates a set of correlated integrals in a two step
process. In the first step, Monte Carlo samples are taken from the integral domains. The
second step uses a process of energy flow to redistribute the energy of the MC samples
over the domains of the correlated integrals in an unbiased way. Figure 8.5 summarizes
this process.

The heart of ER sampling lies in choosing a flow filter to redistribute the energy
of the MC samples. This section describes several balanced energy flow filters (rules that
define energy flow in such a way that general balance holds) We start with the detailed
balance flow rule and then modify it to produce the equal deposition flow rule, which

forms the basis of our ER sampling algorithm.

EnergyRedistributionSampling

For each integral domain, Q;
Forj=1tom
Create an MC sample, X, in £; according to S,
Evaluate X((X) = f(X)/p(%)
If X¢(x) >0
Redistribute the energy of X;(X) using a balanced energy flow filter.

Figure 8.5: The energy redistribution sampling algorithm.
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8.3.1 The Detailed Balance Flow Rule

To work, ER sampling must define a set of mutation strategies and determine the amount of
energy transferred during flow events (g from equation 8.3). The main objective is to define
a flow rule that reduces the variance of a set of Monte Carlo estimates while satisfying
general balance. As an initial attempt, we follow the lead of Metropolis, and use detailed
balance directly to define g. Borrowing the standard acceptance probability used by the

Metropolis algorithm, we derive

X;3)pG)TG — %) ) . (8.6)

o= =min (1, ST

We call this flow rule the detailed balance flow rule for obvious reasons. In practice, we
mutate the original Monte Carlo samples multiple times and transfer some energy to each
of the mutated samples. For example, if the MC sample X is mutated n times, it will produce
n mutated samples, y; ...V,, and the amount of energy transferred to each of the y; will be
Xp(%)q(x — 3i)/n.

After flow occurs, any energy that has not flowed out of ¥ stays there, and con-
tributes to the integral estimate at that point. Consequently, the detailed balance flow rule
is unbiased, but has the serious drawback that a large portion of the energy may not flow
anywhere. Thus, if a bright spot exists in one of the initial integral estimates, it will likely

continue to exist after flow has occurred, and the variance will remain high.

8.3.2 The Equal Deposition Flow Rule

The main problem with the detailed balance flow rule is that some of the energy of the
Monte Carlo estimates does not flow anywhere. A modification that partially solves this
problem is to apply the detailed balance rule recursively on the original sample and all the
mutated samples that are created. Each time the rule is applied, some of the energy at X

gets “whittled off” so that after a few flow events very little of the original energy remains
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The Equal Deposition Flow Rule

EqualDepositionFlow (%, e, m, e;)
numChains = |random(0,1) +e/(m X e4) |
For i = 1 to numChains

j=x
Forj=1tom
Z = mutate(y)
If g(y — Z) > random(0,1)
y=z
Deposit e, energy at y

Figure 8.6: Equal deposition flow. ¥ is the location of a Monte Carlo sample, e = X((X) is
the initial energy at x, m is the sample chain length, and e, is the deposition energy.

at that point. Unfortunately, iterating in this manner results in an exponential growth in the
number of samples. In essence, the recursion creates a tree of splitting Markov chains that
multiplies the number of samples at each iteration. Another problem with this approach
is that the amount of energy in the mutated samples will vary wildly, leading to increased

variance.

Equal deposition. A better solution is to create linear Markov chains that emanate from
each MC sample point rather than splitting chains. Sample chains can be prevented from
splitting by probabilistically keeping all of the energy at the current location or transferring
all of it to the mutated location. These chains of samples create a set of unbiased estimates
of the correlated integrals, one for each flow iteration. (Note that in order for the estimates
to remain unbiased, the sample chains must all be the same length.) To reconstruct the
integrals, the ER sampler desposits an equal fraction of the original energy imparted to the
sample chains after each iteration. Hence, we call this rule the equal deposition flow rule.
To see that the equal deposition flow rule is unbiased, notice that the sample chains,
taken as a whole, form n unbiased estimates of the correlated integrals. Although each
sample is processed separately, the end result is nothing more than the average of the n

unbiased estimates, and is therefore unbiased as well.
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Equal deposition and Metropolis sampling. In the special case where all of the sample
chains start with the same amount of energy, the equal deposition flow rule becomes a form
of Metropolis sampling that does not exhibit startup bias. To put it another way, since the
amount of energy deposited by each sample chain on each flow iteration is equal, the sam-
pler is implicitly taking draws from a distribution proportional to f, which is exactly what
Metropolis does. This process is very similar to how Veach and Guibas [1997] eliminate
startup bias, except that in addition, our algorithm uses the Monte Carlo samples to provide
initial coverage of the entire sample space.! Pseudo-code for this form of the algorithm is
given in figure 8.6.

Starting the sample chains with the same energy is not the only option, however.
Any number of sample chains (even zero) can be started from a given MC sample as long
as the expected energy imparted to the chains equals the sample’s initial energy. Another
point is that there are situations in which the sample chains do not all have to have the same
length. This happens when the set of available mutations splits the domains of the integrals
into disjoint sets. As long as the chains in these disjoint sets are all the same length, the

integral estimates will remain unbiased.

The deposition energy. An essential part of the equal deposition flow rule is the depo-
sition energy, or how much energy will be deposited after flow events. To determine the
deposition energy, we estimate the expected energy of MC samples within the sampling

domain and divide by the desired number of mutations per integrand as follows:

€qd = eave/ka (8.7)

where e, is the deposition energy, e, is the average energy of a number of samples taken

with the Monte Carlo sampler, and k is the desired number of mutations per correlated

! These results also imply that if Veach’s resampling algorithm to eliminate startup bias is used, and
multiple sample chains are created, we cannot use the energy of the original MC samples to determine the
sample chain length without reintroducing bias.
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integrand. Note that a poor estimate of e, will not change the accuracy of the algorithm,
only its run time. Contrast this with Metropolis sampling, in which a value similar to ey,

acts as a global scale factor for the integral estimates.

8.4 [Energy Redistribution Path Tracing

This section gives the details of our Energy Redistribution path tracing algorithm, which
we will refer to as ER path tracing or ERPT. Conceptually, the algorithm is nothing more
than Energy Redistribution sampling with a path tracer as the Monte Carlo sampler. Figure
8.7 gives pseudocode for ERPT. Notice that the algorithm is quite similar to a path tracer.
The only difference is that the step that deposits the energy onto the image plane has been
replaced by a balanced energy flow filter. The remainder of this section describes several
essential details of ER path tracing. We give a brief overview of the rendering equation in
the context of path tracing, and then discuss the idea of Monte Carlo path density. Next we
give a set of rules to determine the relative Monte Carlo sampling density between two ray
paths, which is needed to calculate the value of g. We also discuss the specific mutation

strategies used by our algorithm.

Energy Redistribution Path Tracing

ERPathTracing(m,)
Determine the deposition energy, e; // equation 8.7
For each pixel in the image
For j=1ton

Create a path, &, in the current pixel

X/ (%) = f(X)/p(x) /I evaluate the path

If X f (f) > 0

EqualDepositionFlow (X, X¢(%), m, eq)

Figure 8.7: The ER path tracing algorithm. The code above specifies the equal deposition
flow rule, but any balanced energy flow filter could be used. The value m, is the user-
specified sample chain length. In practice, we found values between about 100 and 1000
to work well.
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8.4.1 Ray Paths and Monte Carlo Path Density

A path tracer creates an image by sampling the incoming light over the area of each pixel on
the image plane. This incoming light is described by the rendering equation [Kajiya, 1986],

one form of which is given below:

Lix—W) = L (x— W) + /Q L(x—-@)f,(¥ —0)|cos 8|dwe. 8.8)

In brief, the rendering equation describes the light coming from a surface point x in a
particular direction, ¥, L(x — ¥). The term L,(x — ¥) is the light emitted directly from
from x in direction ¥, Q, is the hemisphere above point x, and f,(¥ <> ®) is the BRDF
function at x. We refer the reader to [Dutré et al., 2003] for a complete discussion of the
various forms of the rendering equation.

A path tracer samples the rendering equation by means of ray paths that connect the
eye point to a light source through a number of scattering events (reflections or refractions).
To build a path, a path tracer sends out a ray from the eye point into the scene. The path
tracer then extends the ray through a number of scattering events to produce an eye subpath,
using a probabilistic sampling function to choose the outgoing direction at intersection
points. We will call this function p;. The path tracer may connect the eye subpath to a
light source in one of two ways. First, p; may happen to choose a direction that hits a light
source. We will refer to this kind of path as an implicit path. Second, the path tracer may
connect the eye subpath directly to a point on a light source. We will refer to paths created
in this way as explicit paths.

Since the ray paths created by a path tracer are Monte Carlo samples of the render-

ing.equation, the path.tracer.evaluates them in such a way that the expected value of the
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paths that contribute to a given pixel is equal to the pixel brightness. To see how this is

done, consider the path in figure 8.8 below that connects the eye point to a light source:

-XZ \\‘I ’//
v X ‘,Q?

n e

X Xn-1

Figure 8.8: A ray path.

To form an unbiased estimate of the light reaching the eye along direction x| — xg, the MC
sampler in a path tracer multiplies the pertinent terms of the rendering equation together
(i.e. fy, cosO and L,), and divides by the probability that the path was generated by the

sampler. For an implicit path, the estimate is given by

Le(xy—¥,) ﬁ fr(Pi<—0;) |cos 6]
plength( ) =1 pd lP _>®) ’

(8.9)

where ¥; and ©; are the incoming and outgoing directions at x;, 6; is the angle between
©; and the surface normal at X;, pjenen(n) is the probability that the MC sampler chose to

create a path of length n, and p, is defined with respect to solid angle.

Explicit paths are evaluated similarly, except that the term py(¥,—1 — ©,_1) is
replaced by a term that converts area sampling on the surface of a light source to sampling
over the solid angle. Suppose that the ray path in figure 8.8 was made by connecting an eye

subpath to light k. The path would then be evaluted

L, (Xn—>‘P "I:[ fr(¥ie=0;) [cos ;|  fr(¥r1+0,_1) [cosB,_1cos @,
plength =1 pd lP — 0, ) plight(k) parea(xn) d? .

(8.10)

As can be seen, the first two terms are nearly identical to the implicit case. The third term

converts sampling over the surface of light source k to sampling over the solid angle from

point x, ;. The new terms in the expression are as follows: cos¢, describes the angle
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between the normal at point x, on the light source and the incoming direction ¥,; d is the
distance between x,,_ and x,,; pjign (k) is the probability that light kX was chosen by the MC
sampler, and pgeq(x,) is the probability that point x,, was chosen on the light source with

respect to surface area.

Monte Carlo path density. The product of all of the terms related to probability in a
ray path (prengrhs Pd»> Plighr and Pareq) can be thought of as the path density in path space
with respect to the given MC sampler. In section 8.4.2 we will use this fact to compute the

relative sampling density in different parts of path space.

8.4.2 Mutation and Changes in Path Density

ER path tracing relies on two fundamental sampling steps: an initial Monte Carlo step,
and an Energy Redistribution step that uses path mutation. To allow energy flow between
a path X and a mutated path y during the energy redistribution step, the ER sampler must
compute the ratio of the path density at y to the path density at X with respect to the path
tracer’s sampling routines (p(y)/p(X)). Cline and Egbert [2005] give a set of rules that
describe these path density changes for ideal diffuse and specular surfaces sampled in a
particular way. Here we give an extended set of rules that are valid for arbitrary BRDFs for

the mutation types that we use.

Rule 1: Changes to pixel coordinates. Explicit changes to the pixel coordinates of a
path do not change the relative path density, unless the MC sampler samples different
image coordinates with different densities. Note that this rule is only applied if the pixel
coordinates of the path are explicitly manipulated. Rule 5 handles incidental changes to the

pixel coordinates of a path.
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Rule 2: Changes to directions. When the MC sampler chooses an outgoing direction at
a surface, it does so according to the probability distribution p;, which was described in
section 8.4.1. Perturbing an outgoing direction at a surface changes the path density in a
manner proportional to the relative density of samples taken by the MC sampler in the orig-
inal outgoing direction and the mutated direction. In the case of a diffuse surface sampled
with a cosine-weighted distribution about the normal, the density change is proportional to
the ratio of the cosines of the two angles. In the case of an ideal specular surface, perturbing
the outgoing direction to lie in the specular direction changes the path density proportional
to ps, the probability that the MC sampler would choose to send a ray in the specular direc-
tion. (The value of p; might change if, for example, the MC sampler uses a Fresnel term to
decide whether to send a reflection or refraction ray.) Equation 8.11 summarizes all three

cases.

general case

pa(¥y—0,) | cos 6, ps(¥y—0y)
pd(lPx_>®x) |COS 9x| ps(\Px_’®x)

(8.11)

Rule 3: Connecting points in the middle of a path. Connecting two non-specular ver-
tices in a path is a way of sampling surface areas instead of directions, and thus we must
convert between area sampling and directional sampling. If we are sampling directions
according to a cosine-weighted distribution about the surface normal, the density change

is proportional to the familiar geometry term | cos 6 cos ¢ /d?|. On the other hand, if some
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other method is used to sample directions, the density change replaces the cos 8 term with

with the probability of sampling different directions, as shown in equation 8.12.

pa(¥y— By)|cos | % d%
d)% Pa(Wx— Ox)| cos ¢,

(8.12)

Rule 4: Connecting points to light sources. For explicit paths, connecting to an estab-
lished or perturbed point on a light source does not change the path density if the light
source is sampled uniformly with respect to area. Otherwise the density change is propor-
tional to the ratio of probabilities of choosing the mutated and original points on the light.
Implicit paths, on the other hand, incur the same change in path density as connecting

points in the middle of a path.

Rule 5: Connecting a point to the viewer. Assuming a pinhole camera model, if a
connection is made in which one of the vertices is the eye point, the density change is pro-
portional to the modified geometry term |cos ¢ /(d?cos® 8)|. The actual change in density

for this case is given in equation 8.13.

| cos ¢y | d?| cos’ 6,

(8.13)
d3|cos’ 6| | cos ¢ |
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Applying the density change rules. The path density change rules just described must
be applied beginning at the eye point regardless of the manner in which the mutated path
was generated. This is a consequence of the fact that we are trying to capture path density
changes with respect to the MC sampler used by the path tracer.” To compute the total
density change between two paths of the same length, we apply all of the pertinent rules,
and multiply their results together. Appendix 8A gives several examples of how to apply

the rules.

8.4.3 Mutation Strategies

Our implementation uses two mutation types, which correspond to lens and caustic per-
turbations as described in [Veach and Guibas, 1997]. We are able to get away with such
a small set of mutations because the path tracing step provides complete coverage of path
space, and roughly distributes path energy over the image plane. Besides our descriptions
here, Veach and Guibas [1997] and Cline and Egbert [2005] provide descriptions of lens

and caustic perturbations as well as other mutation types.

Lens perturbations. A lens perturbation is a mutation that creates a new path y from
an existing path X beginning at the eye point. To start the mutation, the pixel coordinates
of ¥ are perturbed by a random amount on the image plane.® A ray is cast from the eye
point through this new pixel coordinate, and the new eye subpath is propagated through the
same number and types of specular bounces as the original path, arriving at a non-specular
vertex. If the next vertex in the original path is non-specular, y is completed by connecting
the eye subpath directly to the next vertex in the original path. If the next vertex is specular,
however, the outgoing direction from the diffuse vertex is perturbed, and the eye subpath

is extended through another specular chain looking for two non-diffuse vertices in a row.

2 It is not necessary to use the same MC sampler as the path tracer. Any valid sampler will work, as long
as it is used to compute all parts of q.

3 Our implementation mutates uniformly within a small square (9 x 9 pixels) centered on the current
location.
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This process repeats until either two non-diffuse vertices or the light source are found.
Appendix 8A gives an example lens perturbation, and shows how to compute the relative

path density between X and §.

Caustic perturbations. Caustic perturbations are created in much the same way as lens
perturbations, except that they start at the light source, or second diffuse vertex in the path
(from the eye point). For example, consider the path LSSDE. The caustic mutation starts
by perturbing the direction L — S by a random angle.* The new light subpath is propagated
through two specular bounces, and arrives at a non-specular vertex, producing the light
subpath LSSD... . This subpath is then connected directly to the eye point. Note that
this type of mutation can only be used on paths in which the eye point is connected to a
non-specular vertex. Appendix 8A gives an example of a caustic perturbation and the path

density change that it incurs.

Mutation probabilities. In practice, our strategy is to choose caustic perturbations ex-
clusively for paths of the type L...SDE, and lens perturbations in all other cases. Another
reasonable strategy would be to choose randomly between the two mutation types when

they are both valid.

8.4.4 Noise Filtering

Since ER path tracing is a stochastic process, it can naturally introduce noise into a ren-
dered image. Here we describe two filters that can significantly reduce the noise of images
produced by ERPT. Although they are theoretically biased, we have found the filters to be

effective at eliminating noise while producing few visible artifacts.

* When perturbing the angle, we follow the formulation of Veach and Guibas [1997], and mutate in an
exponential distribution between 0.0001 and 0.1 radians. Cline and Egbert [2005] describes this procedure in
detail.
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Proposed mutations noise filtering. One of the main causes of noise in ERPT is an
imbalance in the number of potential flow events into different pixels. We can compensate
for this imbalance by keeping a tally of the number of proposed mutations to each image
pixel. This “proposed mutations” image is then blurred to produce an approximate expected
number of proposed mutations into each pixel. Our current implementation uses a box
filter to compute this “expected proposed mutations” image. The rendered image is then
de-noised by scaling the pixel values by the ratio of the expected number of proposed
mutations at the pixel to the actual number. Figure 8.9 shows the “proposed mutations”
and “expected proposed mutations” images for a simple scene along with the effect of
applying the filter.

We have been quite pleased with the results of this filter, but there may be room
for improvement. For example, a median filter might be a better choice than a box filter

to smooth the “proposed mutations” image. Also, since the expected proposed mutations

(a) (b)

Figure 8.9: Proposed mutation noise filtering. (a) The right half of the image shows the
number of proposed mutations into each pixel, the “proposed mutations” image. The left
half of the image was produced by convolving the proposed mutations image with a 7 x 7
smoothing kernel. This is the “expected proposed mutations” image. (b) The left half of
the image has been smoothed with our proposed mutations noise filter, and the right half
has not. In spite of the large kernel applied to determine the expected number of proposed
mutations, edges in the filtered image remain sharp. Very large kernel sizes can produce
ringing artifacts, however.
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image is essentially a convolution of the luminance image, it may be better to blur the

unfiltered luminance to produce the “expected proposed mutations” image.

Consecutive sample filtering. A second noise filter that works well in practice is to
refuse to accumulate more than a small number of consecutive samples on a given pixel,
say 10 or 20. During energy redistribution, the ERPT sampler counts how many times in a
row a sample chain deposits energy onto the same pixel. Once the maximum number has
been reached, the sampler continues mutating the sample chain, but it throws away any en-
ergy that would normally be deposited until the sample chain migrates off of the offending
pixel, at which time energy deposition begins again. This filter tends to clean up speckles

that occur when the sampler gets stuck on a given pixel.

8.5 Results

This section demonstrates different aspects of the ERPT algorithm, and compares ERPT to
standard path tracing and MLT. To make the comparison as fair as possible, the functions

that mutate paths are shared between MLT and ERPT.

Comparison of flow rules. We experimented with the different flow filters described
in section 8.3, plugging them in as the flow filter for our ER path tracer. One of these
experiments is summarized in figure 8.10. In virtually every case, the equal deposition

flow rule was superior to the others, so we use it for all of the other examples in the paper.

Sample chain length. We have found that the sample chains emanating from the Monte
Carlo samples need to be fairly long to produce good results. Values between about one
hundred and one thousand seem to work well. As a general rule, very short chains produce
an uneven appearance, and very long chains start to lose the stratifying properies of the
initial MC samples as more and more of the initial samples do not have any sample chains

assigned to them. Figure 8.11 shows the effect of varying the sample chain length.
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Figure 8.10: The effect of different flow rules. The images show the indirect lighting from
the scene in figure 8.9, using different flow filters for the Energy Redistribution step of
ERPT. (Left) The detailed balance flow rule works poorly because energy cannot migrate
away from the MC sample site. (Middle) An iterated version of detailed balance works bet-
ter, but the splitting sample chains produced by the rule are too short to spread evenly over
the image plane. (Right) Equal deposition flow, while not perfect at this sample density,
spreads the energy of the MC samples more evenly than the other two rules.

Figure 8.11: Sample chain length. In the scene above, light reflects off of three colored
mirrors onto a diffuse wall. The desired image (left) is reproduced with ERPT using sample
chains of length 10 (middle), and 100 (right).

Figure 8.12: Comparison of stratification over the image plane between MLT (middle)
using 2 samples per pixel and ERPT (right) using one MC sample and one mutation per
pixel.
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Approximate stratification of path space. In most lighting situations, MLT and ERPT
produce similar results. However, ERPT tends to stratify a little better over the image
plane. For example, consider the images in figure 8.12 showing indirect lighting of a yellow
dragon placed on a red ground plane. The left image gives the desired result, computed by
path tracing using a large number of samples. The middle image was produced by MLT
using two mutations per pixel, and the right image was produced with ER path tracing
using one Monte Carlo sample and one mutation per pixel. Note that the ERPT image
more faithfully reproduces the contours of the dragon than MLT, and the lighting in the
MLT image has more bright artifacts. This is because ERPT creates an initial distribution
of energy that covers path space evenly. By contrast, MLT must rely on large mutations to

fully account for all contributing paths.

Indirect lighting example. Figure 8.13 shows renderings of a gallery scene with strong
indirect lighting, taking approximately equal time, for path tracing, MLT and ERPT. The
only direct illumination visible in the scene comes from the overhead spot light shining on
the dragon. Image (a) was computed with standard path tracing. Since path tracing cannot
coordinate sampling efforts between pixels, it wastes a lot of time sampling unimportant
regions of the path space, resulting in a very noisy image. Image (b) was produced with
Metropolis Light Transport. MLT is able to coordinate sampling efforts between pixels,
producing a better image; however, some noise is still visible. The bottom row shows
ERPT without (¢) and with (d) the noise filters described in section 8.4.4. ERPT without
the noise filters achieves a slightly better result than MLT in this scene. Adding the flow

filters further reduces the noise, producing a much smoother result.

Difficult caustic lighting. Figure 8.14 compares ERPT to MLT and path tracing for a
difficult lighting situation in which a large portion of the lighting comes from implicit
caustic paths seen through a glass surface. Even the “direct” lighting on the torus is made

up of these paths. (b) Path tracing produces a very noisy image. (c) MLT does much better,
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(b)

© (d)

Figure 8.13: Comparison of a scene with strong indirect lighting. All render times are
approximately 20 minutes. (a) Standard path tracing with 84 paths per pixel has a hard
time finding the indirect lighting paths, resulting in a very noisy image. (b) MLT with
200 mutations per pixel produces a much better result, but some noise is still visible. (c)
ERPT with 36 MC samples and 200 mutations per pixel achieves a slight improvement
over MLT. (d) Adding the noise filters described in section 8.4.4 to ERPT removes most of
the remaining noise.
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but still results in a splotchy appearance. A more full set of mutation strategies might
remedy this problem; however, ERPT using the exact same set of mutations (d) has a much
smoother appearance. This is because the deposition energy of any given sample chain is
limited. Image (e) shows the effect of applying the noise filters from section 8.4.4. The top

image (a) shows a higher quality ERPT rendering of the same scene.

Objective Image Quality. Figure 8.15 shows graphs the convergence of ERPT against
path tracing and MLT for the ball, gallery and paperweight scenes. In two of the three
examples, ERPT converges slightly faster than MLT, likely because of its improved strati-
fiction. Once again, however, subjective image quality is better as well, particularly in the

paperweight scene, which is very blotchy in the MLT rendering.

8.6 Conclusion and Ideas for Future Study

This paper presented Energy Redistribution path tracing as an algorithm to solve the gen-
eral global illumination problem. The algorithm has at its core a novel sampling technique
called Energy Redistribution sampling, which can efficiently solve correlated integral prob-
lems. We compared images generated by ER path tracing to images created with standard
path tracing and Metropolis Light Transport, and demonstrated several situations in which
the new algorithm outperforms standard path tracing and MLT.

In addition to the algorithmic contributions of the paper, we feel that some of the
most important contributions of this work are pedagogical. The concepts of correlated
integrals and energy flow offer profound insights into the inner workings of Metopolis as
well as ER sampling, and a new perspective from which to view numerical intergration
problems in general.

We have only scratched the surface in comparing ER to Metropolis sampling. Be-
cause it works directly with function energy, we have found the ER sampling framework

to be more malleable than Metropolis sampling. For example, ER sampling can be easily
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(b) (© (d) (e
Figure 8.14: Difficult caustic lighting. In this scene, a large portion of the light transport
comes from implicit “caustic” paths. (b) Path tracing with 100 paths per pixel produces
a very noisy image. (c) MLT, using 100 mutations per pixel, gets stuck on some of the
caustic paths, producing a splotchy appearance. (d) ERPT using 36 MC samples and 50
mutations per pixel. Although some bright spots are visible, they are much less pronounced
than in the MLT case. This is so despite the fact that both algorithms use the same mutation
strategies. (e¢) Adding the noise filters to ERPT removes most of the small speckles in the
image. (a) A high quality ERPT rendering of the scene using 192 MC samples and 800
mutations per pixel, again using the noise filters. The bottom row images were rendered
at a 640 x 480 resolution in about fifteen minutes, and the top image was rendered at a
resolution of 1200 x 800 in about seven and a half hours on a 3.2 Ghz Pentium 4.
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adapted to handle negative-valued functions as well as all positive ones. Are there domains
besides global illumination that would benefit from ER sampling rather than Metropolis
sampling? In what situations does ER sampling work better?

There are a number of questions that remain in regards to ER sampling flow rules.
For example, are there ways to define better flow rules based on the less restrictive general
balance condition rather than detailed balance? What is the optimal tradeoff between Monte
Carlo samples and ER samples? Can flow rules and mutation strategies be defined which
stratify better?

Noise filtering also seems to be a good avenue for further exploration. We were
quite pleased with the results of the two simple filters presented in the paper, and are cur-
rently looking at the use of other simulation statistics besides “proposed mutations” to
reduce the noise. Finally, we note that the noise filters that were defined in this paper are

biased. Ideally, we would like to create effective noise filters that are unbiased.
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Appendix 8A: Computing Path Density Change

Since computing the change in path density is essential to ERPT, we give several examples
of how to do it here. As a first example, let us assume that we are mutating a path of the

form LDE using a caustic mutation, as shown below:

connection 1o
.. Viewer (rule 5)

connection to
light (rule 4)

The direction starting at the light source is perturbed, and a ray is cast from the light source
in this direction, creating the light subpath LD.... This subpath is connected to the eye
point, once again creating a path of the form LDE. Note that even though the mutation
was generated starting at the light source, the path density change rules must be applied
starting at the eye point. From the eye point, we apply the following rules: A connection
was made from the eye point, so we apply rule 5. Now note that even though the mutation
was generated by perturbing a direction from the light source, from the point of view of the
path tracer, we must make a direct connection to the light source from the D vertex. Thus,
we apply rule 4. As another example, consider a lens subpath mutation on a path of the

form LDDSDE:

specular bounce D
v E (rule 2)

image coordinate
change (rule 1)

X

connection

(rule 3)

direction change
(rule 2) D

In this case, the pixel coordinates of the ray from the eye are changed, and we cast a ray in

the.new-directions- The ray-hits, a diffuse surface, which is followed by a specular surface.
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In this case, the outgoing direction from this D vertex is perturbed, and extended through a
specular bounce to produce the eye subpath of the form ... DSDE. This eye subpath is then
connected directly to the next vertex in the path, to once again produce a path of the form
LDDSDE. Now we apply the density change rules. First, we changed the pixel coordinates,
so we apply rule 1. Next, we perturbed the outgoing direction, so we apply rule 2. Then,
we extended the path through a specular bounce, so we apply rule 2 again. Finally, we

connected two diffuse vertices in the middle of the path, so we apply rule 3.
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Chapter 9

Sample Swarming

A version of this chapter was submitted to the 2007 Eurographics Symposium on

Rendering.

Additional authors for the submission include Parris Egbert and Daniel Adams.

Abstract. Monte Carlo rendering algorithms generally rely on some form of importance
sampling to evaluate the measurement equation. However, most of these importance sam-
pling methods only take local information into account, so that the actual importance func-
tion used may not closely resemble the light distribution in the scene. In this paper, we de-
scribe a sampling technique that augments existing local importance functions with tabular
“swarming maps” that direct sampling towards undersampled regions of path space. The
swarming maps are constructed lazily, relying on information gathered during the course
of sampling. When a bright sample is found, the swarming maps update to significantly
increase the probability of sampling near the same location in path space. Subsequent sam-
ples then naturally “swarm” to that part of path space, exploring the bright region. We show

that swarming maps can be effective in a number of common rendering situations.
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9.1 Introduction

9.1.1 Dimensionality of the Rendering Problem

The core goal of almost all global illumination algorithms is to measure the light trans-
port in a virtual scene that leads to a photorealistic image. Each pixel in such an image
must record the output of an idealized light sensor (e.g. a CCD or tiny section of film) dur-
ing the camera exposure. Mathematically, the output from one of these pixel sensors can
be described by the measurement equation, an integral of the incoming radiance striking
the sensor through the camera lens. In its full form, the measurement equation is a five-
dimensional integral of incoming radiance, with two dimensions for the area of the pixel
sensor, two for the lens, and one for time.

Beyond these five dimensions, the incoming radiance that strikes the lens must be
evaluated using the rendering equation, another high dimensional integral. To account
for participating media and surface reflection, the rendering equation must integrate the
change in radiance along a ray’s trajectory, accounting for the radiance contributions of
every possible scatter point along the way. This leads to a three dimensional integral for
each level of scattering. Thus, to account even for single scattering, the measurement
equation must be eight dimensional, with three more dimensions being added for each

additional scattering event.

9.1.2 Monte Carlo, World Space and Preimage Space

Owing to the complexity of the measurement equation, analytical solutions are generally
not possible, and most renderers resort to some form of Monte Carlo sampling. In world
space, a Monte Carlo sample of the measurement equation consists of a ray path that con-
nects a point on a pixel sensor to a point on a light source, through the camera lens and
a number of light scattering events. However, a ray path sample generally starts out as a

uniformly distributed point in [0, 1)". Each coordinate of the point represents some deci-
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sion that must be made while constructing the ray path. For example, one coordinate may
represent the instant in time for which the ray path is constructed, two more may represent
a point on the pixel sensor, two more a point on the lens, and so forth. In this paper, we will
refer to a ray path sample as being in world space or path space, while the term preimage
space will be used to refer to points in [0,1)", since this is the preimage (domain) of the

function that maps points to ray paths.

9.1.3 Evaluating a Ray Path Sample

Once constructed, a Monte Carlo ray path sample can be evaluated as the product of a num-
ber of terms, each one corresponding to a decision that the renderer made while building
the path. Of course, the details of the product will vary from renderer to renderer, but a

typical evaluation might look something like:

~ time ixel lens  dist. dir.
L(x) = x P X X X e 9.1
Ptime Ppixel Plens Pdist. Pdir.

where Z(x) is the value assigned to ray path x, the numerators of the terms correspond
to the geometric and light scattering properties of the path, and the denominators of the
terms represent the probability with which each part of the path was generated. Z(x) forms
an unbiased estimate of the pixel’s value, which may have a high variance. In fact, the
variance of L may be so high that the renderer must average thousands of samples per pixel

to produce an image with acceptable error.

9.1.4 Importance Sampling in Global Illumination

Importance sampling can be a powerful tool for reducing the variance of a Monte Carlo
estimate. In global illumination, importance sampling methods work by changing the way
in which preimage space points are converted to world space samples to make L from

equation 9.1 as constant as possible. Flattening L can be quite difficult, however, since the
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renderer constructs ray paths as Markov chains of ray segments. In practice, this means that
each term in equation 9.1 not only depends on the local decision, but on previous decisions
as well. Consider the process of choosing a point on the lens to sample. This decision
affects which surface in the scene will be struck by the ray path, which in turn determines
the BRDF function that must be evaluated in the next term of the product, and so on.
Because of these issues, most importance sampling methods for global illumination
only consider one or two terms of L at a time. Nevertheless, importance sampling a few
terms of the measurement equation can be quite successful in some situations, and a large

number of importance sampling methods have been developed around this idea.

BRDF and phase function sampling. One of the terms of the measurement equation
that has received a lot of attention is the BRDF function. The result of this work is
that a large number of analytical and sampled BRDF representations can be importance
sampled [Blinn, 1977; Ward, 1992; Lafortune et al., 1997; Ashikhmin and Shirley, 2000;
Lawrence et al., 2004]. Along with BRDFs, some phase function representations, which
describe the scattering of light within a participating medium, can also be directly impor-

tance sampled [Blasi et al., 1993].

Light source sampling. Light sources in the scene are another common target for im-
portance sampling. This work can roughly be divided into two categories, algorithms
that define an importance function over a large number of light sources [Ward, 1991;
Shirley et al., 1996; Fernandez et al., 2002], and algorithms that define an importance func-
tion over the area of a large light source such as an environment map [Agarwal et al., 2003;

Kollig and Keller, 2003; Ostomoukhov et al., 2004; Debevec, 2005].

Combining BRDF and light source samples. Since the measurement equation is eval-
uated as a product of terms, a number of methods have been developed to importance

sample two terms in the product simultaneously, usually the BRDF and light sources.
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Multiple importance sampling [Veach and Guibas, 1995], for instance, allows a renderer
to sample the BRDF with some samples and the light sources with others, combining the
probabilities in a way that preserves the good properties of both methods. Other work
has gone on to sample or approximately sample the product of the lighting and BRDF,
either by discarding some samples taken from a simpler distribution [Burke et al., 2005;
Talbot et al., 20051, or by constructing an explicit representation of the product suitable for

importance sampling [Clarberg et al., 2005; Cline et al., 2006].

Sampling directions in space. Beyond product sampling, a number of algorithms at-
tempt to provide a more global context to the importance sampler by using probability
maps to indicate good sampling directions in space. The probability maps in these methods
[Jensen, 1995; Hey and Purgathofer, 2002; Steinhurst and Lastra, 2006] are generally con-
structed using a photon map. Our sample swarming algorithm also uses probability maps
to provide more of a global context to the sampler, but we construct the maps lazily during
the process of sampling rather than using a photon map. Furthermore, our probability maps
can take into account terms of the measurement equation, such as the area of the lens, that

are ignored by methods that simply specify sampling directions in space.

9.2 Sample Swarming

This section describes our sample swarming algorithm in detail. The basic idea behind sam-
ple swarming is to supplement existing importance sampling methods with tabular prob-
ability maps, called swarming maps. The renderer uses a custom set of swarming maps
for each image pixel to augment any existing importance sampling functions. The purpose
of the swarming maps is to direct sampling efforts towards undersampled regions of the
measurement equation that may not be properly accounted for by other sampling methods.

For example, one of the swarming maps in our system helps determine what direction to
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sample from a non-specular surface, which can be useful in sampling caustics and other
indirect lighting phenomena.

The swarming maps for a given pixel are assembled lazily from the Monte Carlo
samples that have already been taken in the pixel’s neighborhood. When a bright sample
is found, the swarming maps update to increase the probability of sampling near the same
location in path space. Subsequent samples then naturally “swarm” to that part of path
space, exploring the bright region and reducing variance. This swarming behavior can be
quite effective at finding features in path space that are not captured by local importance

functions such as BRDF or light source sampling.

9.2.1 World Space and Preimage Space Maps

The swarming maps that we define in this paper can be grouped into two main categories,
those that act in world space, and those that act in preimage space.

World space swarming maps work in parallel with existing importance sampling
methods. That is, some preimage space points get transformed to world space using
standard importance sampling methods, while others get transformed based on the world
space swarming maps, as shown in figure 9.1. Hence, a world space swarming map is re-
ally just another importance sampling method to be combined with existing methods using
multiple importance sampling. Assuming the balance heuristic, the resulting probability
distribution is a weighted average of the swarming map probability p,., and the density

induced by other importance sampling methods p;s:

Ptot = apmap + (1 - a)piSa (92)

where « is the fraction of the points that are transformed using the swarming maps.
Preimage space swarming maps, on the other hand, serve as a preprocess to standard
importance sampling. The sampler feeds uniformly distributed points in [0, 1)" into the

preimage space map, which transforms them into non-uniformly distributed points, but
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still in preimage space. The non-uniform points are then transformed to world space with
standard importance sampling methods. Figure 9.2 shows this process graphically. The
end probability resulting from this double transformation is the product of the probability

specified in the swarming map and the natural probability created by importance sampling:

Ptot = Pmap Pis- (93)

9.2.2 Maps Used in our System

In theory, one could define a single, high dimensional swarming map to help make all of
the decisions related to constructing ray paths. However, this would cause memory over-
head and “curse of dimensionality” issues (a high dimensional space is more difficult to
explore than a low dimensional one). To avoid these issues, we define a series of one
and two dimensional maps to guide the renderer in making specific decisions. The maps
currently defined in our renderer include time, lens area, scatter distance within a partici-
pating medium, bifurcation (whether to reflect or transmit), light selection, point on light,
and scatter direction. Table 9.1 gives a brief description of the swarming map types defined
by our renderer. Figures 9.3 through 9.9 show the kinds of results that can be achieved by
including each of the map types, compared against a converged image and standard path

tracing. In our system, the maps can be individually turned on or off by the user.

Note that while the scenes in figures 9.3 through 9.9 may seem contrived, each one
actually corresponds to a fairly common rendering task. For example, cinematographers
often utilize a very shallow depth of field like that shown in figure 9.4 to de-emphasize
background elements or create a dreamy appearance. Furthermore, ordinary household
objects such as glasses and pitchers exhibit layering of transparent surfaces, much like the
scene in figure 9.7. Other common effects in the examples include light scattering in fog,
and scenes with large numbers of light sources. Sample swarming forms a flexible tool that

can aid existing importance sampling methods in all of these situations.
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Figure 9.1: World space swarming maps act as an additional importance sampling method
to transform points from preimage space into samples in world space. The resulting proba-
bility distribution is a weighted average of the distribution induced by standard importance
sampling and the one induced by the swarming maps.
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Figure 9.2: Preimage space swarming maps act as a preprocess to standard importance
sampling, changing the distribution of points in preimage space that are fed into the im-
portance sampling routines. The resulting distribution of samples in world space is propor-
tional to the product of the distribution specified by the preimage space maps and the one
induced by standard importance sampling.
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Map Name | Helps to sample Dim. Space

Time Motion blur 1D Preimage
Lens Depth of field 2D Preimage
Scatter dist. | Participating media | 1D Preimage

Bifurcation | Reflect vs. transmit | Discrete | World
Light select. | Many light sources | Discrete | World
Point on light] Large light sources | 2D Preimage
Scatter dir. | Caustics 2D World

Table 9.1: Types of swarming maps. The table lists the different types of swarming maps
defined in our system, along with short descriptions of the kinds of rendering situations
each type helps to sample, the map dimensionality, and the space in which the map resides
(preimage or world space).

Figure 9.3: The time map helps the renderer choose what instant in time to sample. The
scene shows six motion blurred spheres. Path tracing (middle) cannot reliable predict when
the spheres will be within view for a given pixel. Adding a time map (right) provides this
information. Both examples were rendered using 16 samples per pixel.

Figure 9.4: The lens map aids in sampling the lens area. Three colored lights are rendered
out of focus, producing a color wheel pattern. Since path tracing always samples the lens
uniformly, the three light sources are barely discernible. Adding a lens map significantly
improves the render quality with the same sample density (32 samples per pixel).
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Figure 9.5: A glass ball focuses light onto a plane, creating a bright caustic. Path tracing
must sample randomly to find those directions that will refract through the glass ball to
hit the light source. The scatter direction maps share this information between pixels,
producing a more accurate result (32 samples per pixel).

Figure 9.6: A scene is lit by 22 spot lights. Path tracing with 6 samples per pixel produces a
poor image because it simply chooses lights at random to sample. Sample swarming using
a light selection map does much better because information about which lights illuminate
a given region of the image propagates through the image during rendering.

Figure 9.7: A bifurcation map helps decide whether the renderer should reflect or trans-
mit when creating a ray path. In the above scene, three spherical light sources are viewed
through three glass spheres that act as lenses. Our path tracer naturally chooses both re-
flection and transmission 50% of the time, so only 1/64 of the samples make it through the
glass spheres to reach the light sources. Adding a bifurcation map increases the odds of
reaching the light sources by nearly an order of magnitude (16 samples per pixel).
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Figure 9.8: The scatter distance map helps determine how far a ray path should penetrate a
participating medium before generating a scattering event. In the above scene, six colored
spot lights shine up into a uniform fog. To receive any light, a sample must produce a scat-
tering event within the cone of one of the spot lights. Path tracing has no global information
about where the spot lights may be shining, so it relies solely on the scattering properties
of the fog to determine where to place scattering events. The scatter distance map provides
the renderer with this context, leading to an improved result (32 samples per pixel).

Figure 9.9: A diffuse ball sitting on a glossy plane is illuminated by an environment map.
Even while sampling both the environment map and surface BRDFs, path tracing is not
able to accurately reconstruct the illumination on the glossy plane. Adding a “point on
light” map guides the sampler towards regions of the light source that are responsible for
the glossy highlights (32 samples per pixel).
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9.2.3 Map Storage and Importance Propagation

Map storage. Memory overhead for the swarming maps is kept to a minimum by only
storing maps for two rows of pixels in the image at a time—the current row being rendered
and the row just completed. To render a pixel, the renderer first assembles swarming maps
for the pixel by averaging the maps from the neighboring pixels that have already been
rendered. Our implementation averages seven maps, as shown in figure 9.10. Typically,
the maps are kept fairly small in size. For 2D maps, a size of 32 x 32 is typical, and 1D
maps generally range between 64 and 256 entries. When rendering an image, we scan
back and forth to allow importance to propagate both left and right, as well as down, in the

image.

The temporary maps. Ideally, we would like to add each Monte Carlo sample directly
to the current pixel’s swarming maps, but several difficulties get in the way. First, the maps
for the current pixel are inverted to facilitate quick lookup, and it would be expensive to
add samples directly to the inverted maps. Second, the pixel maps are normalized, and it
is unclear how to scale individual samples so that they combine properly with normalized
maps. For these reasons, we keep a set of temporary swarming maps to hold importance
information obtained while rendering the current pixel. After the pixel has been rendered,
the temporary maps can be scaled and combined with the maps for the pixel, and this
information will propagate to subsequent pixels.

Before processing a pixel, the renderer clears the temporary maps. Then, each
Monte Carlo sample produced while rendering the pixel is added to the temporary swarm-
ing maps. As an example of how this is done, suppose that the renderer has created the
ray path x with value Z(X) from point u in preimage space. Now suppose that the coordi-
nates (0.2,0.1) from u were used to choose a point on the lens while constructing x. Since
the lens map is a preimage space map, the new sample should be added to the temporary

lens map at location (0.2,0.1). To do this, we find the map coordinates associated with
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(0.2,0.1) and add L(x) to this entry in the temporary map. Additionally, we add L(x) to
the 8 neighboring map entries, to help promote exploration.

For a world space map, we still add Z(x) to a 3 x 3 neighborhood in the map, but the
location in the map is determined by the geometric properties of x rather than coordinates in
u. The scatter direction map, for instance, encodes the first non-specular bounce direction
of the path in latitude-longitude format.

Two of the swarming maps in our system make discrete rather than continous deci-
sions, and adding values to these maps works somewhat differently than in the continuous
case. One of these discrete maps is the light selection map. Each entry in the light selection
map corresponds to a specific light source in the scene, so we only add Z(X) to a single
table entry in this map. The second discrete map in our system is the bifurcation map. The
bifurcation map helps decide at each surface intersection whether to reflect or transmit. To
update this map, we keep a list of all the reflect/transmit decisions that were made while
creating the path, and add Z(X) to corresponding entries in the map. For example, suppose
that path x has the form ERTTL (eye, reflect, transmit, transmit, light). To add x to the

bifurcation map, L(x) would be added to three entries in the map, reflect,, transmit, and

transmity.

Combining in the temporary maps with the current pixel. Once a pixel has been ren-
dered, we can combine the temporary maps with the maps for the pixel. The purpose of
this operation is to improve the swarming maps for future pixels, and it is performed as

follows:
e First, we normalize the temporary maps (divide them by their sum).

e Next, we add a constant value to each entry in the preimage space maps. Since all of
the samples are fed through the preimage space maps, adding a constant value to the
maps helps the renderer balance between exploration and exploitation. In the current

implementations,;we add the value 1/n to each map entry, where n is the number

209

www.manaraa.com



Pixel Maps

— S
<«— Scan order Time (1D)
Image Lens (2D)
Participating media (1D)
Active Bifurcation (discrete)
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Figure 9.10: Importance propagation through map averaging. The renderer creates swarm-
ing maps for the current pixel by averaging the maps from seven neighboring pixels within
the two active pixel rows. (The maps for pixels to the right of the current pixel in the figure
cannot be included since they have not yet been defined.) Importance information gleaned
while rendering the pixel is stored in a set of temporary maps which are combined pixel’s
maps after it has been rendered.

of entries in the map. World space maps (scatter direction), do not need this step,
since exploration is provided by standard importance sampling. Nevertheless, we
still add a tiny value to each world space map entry to avoid underflow during later

map averaging. We then renormalize the temporary maps.

e The temporary maps are then inverted so that they can be added to the already in-
verted pixel maps. Inversion of a 1D map simply means computing a CDF of the
map. We invert 2D maps similary, creating a CDF for each row of the map, as well
as an extra CDF of the Y axis marginal. A lookup in a 1D map then requires a single

binary search, and a lookup in a 2D map takes 2 binary searches.

e Finally, the inverted temporary maps are added to the pixel maps, and the pixel maps

are renormalized. (Note that this can be done directly to the inverted maps.)

After the temporary maps have been added in, the maps for the pixel contain a mix of
information gleaned while rendering the pixel and information propagated from the pixel’s

neighbors. It is this blending of importance data between old and new samples that causes
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the swarming behavior in our algorithm. Path space regions that remain bright over several

pixels get reinforced, while regions that become dim quickly lose importance.

9.3 Results

We have implemented sample swarming as an extension to the PBRT renderer. In this

section we discuss the results of our method and compare it to standard path tracing.

Numerical comparison of the example renderings. Table 9.2 gives the numerical error
of the images in figures 9.3 through 9.9. All of the renderings made with sample swarming
have significantly lower error than path tracing with the same number of samples per pixel.
To put these numbers into perspective, the lens map example from figure 9.4 required more
than 18 times as many path traced samples to equal the error of the sample swarming

rendering.

Path Sample

tracing swarming

Time map (fig. 9.3) 1.045 0.207
Lens map (fig. 9.4) 3.185 0.539
Scatter direction (fig. 9.5)  2.025 0.822
Light selection (fig. 9.6) 0.904 0.312
Bifurcation map (fig. 9.7)  3.924 0.920
Scatter distance (fig. 9.8) 4.944 1.481
Point on light (fig. 9.9) 0.429 0.166

Table 9.2: Numerical results for figures 9.3 through 9.9, comparing RMSE (o /) of path
tracing and sample swarming.

More complicated examples. Figures 9.11 through 9.14 show a number of more com-
plicated scenes than the examples from section 9.2.
Figure 9.11 demonstrates the ability of sample swarming to find shadow boundaries

by using the scatter direction map. In the scene, a bunny is enclosed in a box that has a
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small hole in the top to let light in. The swarming maps share information between pixels
about the location of the hole, improving the rendering.

Figure 9.12 shows how effective the scatter direction map can be in the presence of
specular surfaces. The swarming maps are able to latch on to important directions within
path space and share this information between pixels.

In figure 9.13, a glass blender and matching glasses sit on a shiny counter top.
While the objects in the scene are ordinary, they pose great difficulties to the renderer. The
glasses are arranged one behind the other, which in effect places eight refractive surfaces
in series in the scene. Also, the countertop is quite shiny, producing bright secondary
reflections throughout the scene. Turning on the scatter direction and bifurcation swarming
maps improves the rendering significantly, especially in the glass regions. However, even
the “converged” image, rendered with sample swarming using 1280 samples per pixel,
contains discernible noise. All of the shiny surfaces in this scene make it particularly
difficult to sample effectively.

Finally, the scene in figure 9.14 demonstrates the use of the point on light and lens
maps. This scene is difficult for a number of reasons. First, the BRDF on the ground plane
is spatially varying, making it difficult to use precomputed methods like wavelet importance
sampling. Next, since the scene is out of focus, methods that only send a few primary
rays per pixel will not work. Finally, the rendering includes indirect lighting effects. Our
path tracing render of this scene sampled both the BRDF function and environment map
light source using multiple importance sampling. Nevertheless, adding the swarming maps

appreciably improved the final result over this advanced sampling strategy.

9.4 Discussion

Areas for improvement. Although sample swarming can be effective in many situations,
there are a number of limitations to the algorithm as it stands. First, the maps can only help

explore important regions of path space once they have been found by random sampling.
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When the sampler does find an important region, information about the region cannot prop-
agate back to pixels that have already been rendered. Another issue is that the maps do not
always cooperate to reduce error. Often, one of the maps provides nearly all of the variance
reduction, while the others do not help appreciably. This effect seems to be a result of the
fact that the maps are 1 and 2D projections of a higher dimensional space. Finally, we note
that path space coherence cannot always be found and exploited by swarming maps. For
example, we experimented with defining swarming maps for the second bounce of the path,
but these provided only a marginal benefit.

Despite these shortcomings, we believe sample swarming to be a practical method
to reduce error in global illumination images. Several of the maps address parts of the
measurement equation that are usually glossed over by other sampling methods, such as

the point on the lens and instant of time to sample.

Relation to particle swarm optimization. Sample swarming is similar in a number of
ways to the particle swarm optimization methods described in the machine learning litera-
ture. Both particle swarm optimization and sample swarming attempt to define a sampling
distribution based on samples previously taken, and both algorithms must balance between
exploration of the problem space and exploitation of high valued areas already found. On
the other hand, sample swarming does not keep a population of particles, and the end goal
of sample swarming is to integrate over the problem space rather than to perform a search

within it.

More types of swarming maps. Besides the seven maps that we implemented, other
types of swarming maps are certainly possible. In fact, almost any decision made by the
renderer could conceivably be augmented by a swarming map. As an example, a spectral

renderer could use a map to help determine which wavelength to sample.
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Sample swarming and other global illumination algorithms. This paper demonstrated
sample swarming in the context of Monte Carlo path tracing. However, swarming maps
may be even more effective when used in conjunction with algorithms that reduce the
dimensionality of the measurement equation by precomputing indirect lighting. Photon
mapping with a final gather step [Jensen, 1996] and multidimensional light cuts
[Walter et al., 2006] come to mind as two algorithms that could benefit from the addition

of swarming maps.

9.5 Conclusion

In this paper we presented sample swarming as a technique to supplement existing im-
portance sampling functions in global illumination. The new method works by defining
tabular swarming maps that hold importance information gleaned from the samples taken
while rendering an image. We showed that sample swarming can be quite effective at

reducing variance in a number of common rendering situations.
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Figure 9.11: “Hare Noire” scene with indirect illumination. Light shines through a small
hole in a box, illuminating a bunny model. Path tracing (top) must send out many random
samples to find the hole, but sample swarming with a scatter direction map (bottom) shares
information about unshadowed directions between pixels, reducing noise appreciably. Both
examples use 64 samples per pixel.
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Figure 9.12: The paperweight scene above was rendered with path tracing (top) and sam-
ple swarming using the scatter direction and bifurcation maps (bottom). Note the many
improvements in the sample swarming image compared to standard path tracing. For exam-
ple, the torus is much smoother in the sample swarming image, as is the caustic underneath
the paperweight. Both examples use 256 samples per pixel.
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Figure 9.13: A blender and matching glasses. This scene is quite difficult because of the
glass and shiny tile. Path tracing (bottom left) has a lot of trouble with the glass surfaces and
caustic regions of the image. Sample swarming using the scatter direction and bifurcation
maps (bottom right) does a much better job at sampling these effects. Note how much
smoother the glass appears in the sample swarming render. Both examples are rendered
with 128 samples per pixel. Cranking up the number of samples per pixel to 1280 (top
image) produces a much better result, but even with sample swarming a number of bright
speckles are still present.
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Figure 9.14: An out of focus iguana, rendered with path tracing (left images) and sam-
ple swarming using the lens and point on light maps (right images). Both renderings use
64 samples per pixel. The close-ups on the bottom row demonstrate the improvement in
quality afforded by adding the swarming maps. The top image shows a converged result
rendered with 8000 samples per pixel.
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Chapter 10

Conclusion

This dissertation has presented a number of algorithms related to three topics in
ray based global illumination: low level ray casting, direct lighting, and general global
illumination. Here we conclude by summarizing the contributions made in each of these

areas.

10.1 Ray Casting

Part I of the dissertation discussed ray casting methods, with particular emphasis on ac-
celeration data structures. In chapter 2 we discussed the three types of acceleration data
structures commonly used by modern ray tracers, voxel grids, BSP trees and bounding
volume hierarchies, emphasizing the memory requirements of each.

The research in part I continued along these lines. In chapter 3 we presented a new
acceleration data structure, the lightweight bounding volume hierarchy (LBVH), specifi-
cally designed to have a small memory footprint compared to the geometry that it bounds.
An LBVH reduces its memory footprint over standard bounding volumes through three
space saving techniques. First an LBVH eliminates pointers by storing the hierarchy in
a heap-like structure. Leaf pointers are also eliminated by means of implicit indexing.
Memory usage can be further reduced by encoding the bounding box extents with two-byte
integers rather than floating point numbers. Finally, by increasing the branching factor of

the hierarchy from two to four, a third of the nodes in the hierarchy can be eliminated while
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maintaining the same number of leaves. The resulting data structure requires only 16 bytes

of memory per leaf node, and does not significantly increase render times.

10.2 Sampling Methods in Direct Lighting

In Part I, we discussed sampling methods related to direct lighting. Chapter 4 presented the
direct lighting equation and reviewed a number of sampling strategies to solve it, including
BRDF and light source sampling, multiple importance sampling (MIS) and resampled im-
portance sampling (RIS). We also established the goal of distributing samples according to
the product of several terms of the direct lighting equation.

Following this introduction, the next chapters covered two algorithms to solve the
direct lighting equation. Chapter 5 presented two stage importance sampling as a method
to distribute samples according to the product of the BRDF and light source. Two stage
importance sampling works by partitioning the light source into a hierarchy of regions
based on the BRDF function. Once made, the partition can be used to transform a uniform
distribution of points to approximate the product distribution. The approximation improves
as more samples are added, and visibility becomes the main source of variance after a few
dozen samples per pixel.

Chapter 6 addressed the visibility issue by defining visibility maps at sparsely sam-
pled locations on the image plane. These visibility maps were then used to cull some of
the samples in occluded regions. By eliminating some of the non-visible samples from
a double product distribution, the surviving samples would be approximately distributed
according to the triple product of the BRDF, lighting and visibility. This chapter also in-
troduced the concepts of world space and preimage space samples. As the name implies,
world space samples are ray samples defined in the geometric space of ray paths. Preimage
space samples, on the other hand, reside in the abstract space of random numbers that will

be transformed to world space. Our work demonstrated that it is often more efficient to
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work in preimage space, since an expensive transformation is required to convert points

from preimage to world space.

10.3 Sampling Methods in Global Illumination

Part III of the dissertation focused on sampling methods related to general global illumi-
nation. Chapter 7 described the core equations of global illumination, the rendering and
measurement equations. It then went on to review a number of the most important ray
based global illumination algorithms currently in use, including path tracing, irradiance
and radiance caching, light tracing, bidirectional path tracing, photon mapping, instant ra-
diosity, and Metropolis light transport (MLT).

The original research in part III described new sampling algorithms that work by
sharing information obtained during the course of sampling between pixels to reduce vari-
ance. Chapter 8 presented energy redistribution path tracing (ERPT), which attempts to
combine path tracing with Metropolis Light Transport to improve the stratification char-
acteristics of MLT. ERPT works by spreading the energy of an initial set of path traced
samples over the image plane by means of Metropolis-style mutations. The energy spread-
ing has the effect of sharing information about bright samples between pixels, reducing the
overall variance.

The technique described in chapter 9 shares sampling information between pixels
in a more explicit way that ERPT. In this technique, called sample swarming, each pixel in
the image keeps a set of tabular “swarming maps” that store importance information gained
during the course of sampling. Whenever a bright sample is found, the swarming maps
update to increase the probability of sampling that part of path space. Subsequent samples
then “swarm” to the bright region, increasing the sampling density there. This swarming
behavior often decreases variance because the measurement equation in a neighborhood
of pixels is usually highly correlated. Building on the ideas of preimage space and world

space presented. in chapter 6, we defined both preimage and world space swarming maps.
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World space swarming maps provide an additional importance function that can help make
up for the shortcomings of other sampling methods by reinforcing bright portions of path
space. Preimage space maps, on the other hand, can be even more effective since they
act as a preprocess to other importance sampling methods. The resulting distribution of
samples is proportional to the product of the map distribution and distribution induced by
the importance sampling method. Because of this behavior, preimage space maps are a

natural fit for sampling function products such as those found in the rendering equation.
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